Portable System for Time-Domain Diffuse Correlation Spectroscopy

被引:35
作者
Tamborini, Davide [1 ,2 ]
Stephens, Kimberly A. [1 ,2 ]
Wu, Melissa M. [1 ,2 ]
Farzam, Parya [1 ,2 ]
Siegel, Andrew M. [3 ]
Shatrovoy, Oleg [3 ]
Blackwell, Megan [3 ]
Boas, David A. [1 ,2 ]
Carp, Stefan A. [1 ,2 ]
Franceschini, Maria Angela [1 ,2 ]
机构
[1] Massachusetts Gen Hosp, Dept Radiol, Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA 02114 USA
[2] Harvard Med Sch, Charlestown, MA 02114 USA
[3] MIT, Lincoln Lab, Cambridge, MA 02139 USA
基金
美国国家卫生研究院;
关键词
Diffuse correlation spectroscopy; near infrared spectroscopy; time-domain diffuse correlation spectroscopy; CEREBRAL-BLOOD-FLOW; NEAR-INFRARED SPECTROSCOPY; IN-VIVO; OXYGEN-METABOLISM; NEWBORN-INFANTS; CALIBRATION; VALIDATION; SCATTERING; BRAINS; VOLUME;
D O I
10.1109/TBME.2019.2899762
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We introduce a portable system for clinical studies based on time-domain diffuse correlation spectroscopy (DCS). After evaluating different lasers and detectors, the final system is based on a pulsed laser with about 550 ps pulsewidth, a coherence length of 38 mm, and two types of single-photon avalanche diodes (SPAD). The higher efficiency of the red-enhanced SPAD maximizes detection of the collected light, increasing the signal-to-noise ratio, while the better timing response of the CMOS SPAD optimizes the selection of late photons and increases spatial resolution. We discuss component selection and performance, and we present a full characterization of the system, measurement stability, a phantom-based validation study, and preliminary in vivo results collected from the forearms and the foreheads of four healthy subjects. With this system, we are able to resolve blood flow changes 1 cm below the skin surface with improved depth sensitivity and spatial resolution with respect to continuous wave DCS.
引用
收藏
页码:3014 / 3025
页数:12
相关论文
共 40 条
[1]   Pressure modulation algorithm to separate cerebral hemodynamic signals from extracerebral artifacts [J].
Baker, Wesley B. ;
Parthasarathy, Ashwin B. ;
Ko, Tiffany S. ;
Busch, David R. ;
Abramson, Kenneth ;
Tzeng, Shih-Yu ;
Mesquita, Rickson C. ;
Durduran, Turgut ;
Greenberg, Joel H. ;
Kung, David K. ;
Yodh, Arjun G. .
NEUROPHOTONICS, 2015, 2 (03)
[2]   SCATTERING AND IMAGING WITH DIFFUSING TEMPORAL FIELD CORRELATIONS [J].
BOAS, DA ;
CAMPBELL, LE ;
YODH, AG .
PHYSICAL REVIEW LETTERS, 1995, 75 (09) :1855-1858
[3]   Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation [J].
Boas, DA ;
Yodh, AG .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1997, 14 (01) :192-215
[4]   Haemoglobin oxygen saturation as a biomarker: the problem and a solution [J].
Boas, David A. ;
Franceschini, Maria Angela .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1955) :4407-4424
[5]   Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate [J].
Buttafava, Mauro ;
Boso, Gianluca ;
Ruggeri, Alessandro ;
Dalla Mora, Alberto ;
Tosi, Alberto .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (08)
[6]   SPAD array module for multi-dimensional photon timing applications [J].
Cammi, C. ;
Gulinatti, A. ;
Rech, I. ;
Panzeri, F. ;
Ghioni, M. .
JOURNAL OF MODERN OPTICS, 2012, 59 (02) :131-139
[7]   Validation of diffuse correlation spectroscopy measurements of rodent cerebral blood flow with simultaneous arterial spin labeling MRI; towards MRI-optical continuous cerebral metabolic monitoring [J].
Carp, S. A. ;
Dai, G. P. ;
Boas, D. A. ;
Franceschini, M. A. ;
Kim, Y. R. .
BIOMEDICAL OPTICS EXPRESS, 2010, 1 (02) :553-565
[8]   Time domain diffuse correlation spectroscopy: modeling the effects of laser coherence length and instrument response function [J].
Cheng, Xiaojun ;
Tamborini, Davide ;
Carp, Stefan A. ;
Shatrovoy, Oleg ;
Zimmerman, Bernhard ;
Tyulmankov, Danil ;
Siegel, Andrew ;
Blackwell, Megan ;
Franceschini, Maria Angela ;
Boas, David A. .
OPTICS LETTERS, 2018, 43 (12) :2756-2759
[9]   Cerebral blood flow and the injured brain: how should we monitor and manipulate it? [J].
Dagal, Armagan ;
Lam, Arthur M. .
CURRENT OPINION IN ANESTHESIOLOGY, 2011, 24 (02) :131-137
[10]   Perioperative cerebral hemodynamics and oxygen metabolism in neonates with single-ventricle physiology [J].
Dehaes, Mathieu ;
Cheng, Henry H. ;
Buckley, Erin M. ;
Lin, Pei-Yi ;
Ferradal, Silvina L. ;
Williams, Kathryn ;
Vyas, Rutvi ;
Hagan, Katherine ;
Wigmore, Daniel ;
McDavitt, Erica ;
Soul, Janet S. ;
Franceschini, Maria Angela ;
Newburger, Jane W. ;
Grant, P. Ellen .
BIOMEDICAL OPTICS EXPRESS, 2015, 6 (12) :4749-4767