Misorientation development in continuous dynamic recrystallization of AZ31B alloy sheet and polycrystal plasticity simulation

被引:34
|
作者
Zhou, Guowei [1 ,2 ]
Li, Zihan [1 ]
Li, Dayong [1 ,3 ]
Peng, Yinghong [1 ]
Wang, Huamiao [1 ,3 ]
Wu, Peidong [4 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China
[2] Ohio State Univ, Coll Engn, Columbus, OH 43212 USA
[3] Shanghai Jiao Tong Univ, Mat Genome Initiat Ctr, Shanghai 200240, Peoples R China
[4] McMaster Univ, Dept Mech Engn, Hamilton, ON L8S 4L7, Canada
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2018年 / 730卷
基金
加拿大自然科学与工程研究理事会; 上海市自然科学基金; 中国国家自然科学基金;
关键词
Continuous dynamic recrystallization; Magnesium alloy; Nucleation; Polycrystal plasticity; Grain size; Texture; HIGH-TEMPERATURE DEFORMATION; MAGNESIUM ALLOY; MICROSTRUCTURAL EVOLUTION; CRYSTAL PLASTICITY; MECHANICAL-BEHAVIOR; MG ALLOY; TEXTURE EVOLUTION; HOT-WORKING; COMPRESSION; MODEL;
D O I
10.1016/j.msea.2018.05.095
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A series of electron backscattered diffraction (EBSD) experiments is carried out to explore nucleation features in the continuous dynamic recrystallization (CDRX) of AZ31 Mg alloy sheets at 200 degrees C. The CDRX mechanism that misorientation accumulated from the core area to grain boundary leads to nucleation of dynamic recrystallization grains around parent grains can be identified for the present fine-grained AZ31B Mg alloy rolling sheet. A crystal plasticity approach for DRX simulation is extended to simulate the hot deformation and CDRX of the AZ31B magnesium alloy sheets. The experimental results of uniaxial tension along rolling direction (RD) and compression tests along RD and normal direction of the AZ31B sheets at 200 degrees C are numerically investigated by the current model in terms of mechanical behaviors, grains' rotation, textures orientation and grain size evolution. The VPSC-DRX model that considers multiple slip systems and indirectly incorporates the misorientation can reproduce well the stress-strain curves, r-values, grain size change and texture evolution. The introduction of DRX will change the slip mode activities at 200 degrees C. The VPSC-DRX model can better predict the texture evolution compared to the simulation results regardless of DRX effects.
引用
收藏
页码:438 / 456
页数:19
相关论文
共 50 条
  • [1] Influence of Dynamic Recrystallization on Tensile Properties of AZ31B Magnesium Alloy Sheet
    Hu, Li Juan
    Peng, Ying Hong
    Li, Da Yong
    Zhang, Shao Rui
    MATERIALS AND MANUFACTURING PROCESSES, 2010, 25 (08) : 880 - 887
  • [2] A polycrystal plasticity based discontinuous dynamic recrystallization simulation method and its application to copper
    Zhou, Guowei
    Li, Zihan
    Li, Dayong
    Peng, Yinghong
    Zurob, Hatem S.
    Wu, Peidong
    INTERNATIONAL JOURNAL OF PLASTICITY, 2017, 91 : 48 - 76
  • [3] Influence of texture on the recrystallization mechanisms in an AZ31 Mg sheet alloy at dynamic rates
    Dudamell, N. V.
    Ulacia, I.
    Galvez, F.
    Yi, S.
    Bohlen, J.
    Letzig, D.
    Hurtado, I.
    Perez-Prado, M. T.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 532 : 528 - 535
  • [4] Mechanism of plasticity enhancement of AZ31B magnesium alloy sheet by accumulative alternating back extrusion
    Wang, Ye
    Li, Feng
    Bian, Nan
    Du, Hua Qiu
    Huo, Peng Da
    JOURNAL OF MAGNESIUM AND ALLOYS, 2023, 11 (05) : 1791 - 1801
  • [5] Modeling and simulation of dynamic recrystallization behaviors of magnesium alloy AZ31B using cellular automaton method
    Chen, Ming-Song
    Yuan, Wu-Quan
    Li, Hong-Bin
    Zou, Zong-Huai
    COMPUTATIONAL MATERIALS SCIENCE, 2017, 136 : 163 - 172
  • [6] Modeling of temperature-sensitive anisotropic behavior of AZ31B magnesium alloy sheets: Integration of polycrystal plasticity and yield function calibration
    Pang, Jiali
    Sugiyama, Sumio
    Yanagimoto, Jun
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 931
  • [7] Formability of AZ31B magnesium alloy sheet
    Wang L.
    Lu Z.
    Zhao Y.
    Qiu X.
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2006, 21 (2): : 25 - 27
  • [8] The Formablity of AZ31B Magnesium Alloy Sheet
    汪凌云
    卢志文
    Journal of Wuhan University of Technology(Materials Science Edition), 2006, (02) : 25 - 27
  • [9] The formablity of AZ31B magnesium alloy sheet
    Wang Lingyun
    Lu Zhiwen
    Zhao Yazhong
    Qiu Xiaogang
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2006, 21 (02): : 25 - 27
  • [10] Modelling of flow stress characterizing dynamic recrystallization for magnesium alloy AZ31B
    Liu, Juan
    Cui, Zhenshan
    Li, Congxing
    COMPUTATIONAL MATERIALS SCIENCE, 2008, 41 (03) : 375 - 382