Flexible operation of CSIRO's post-combustion CO2 capture pilot plantat the AGL Loy Yang power station

被引:43
|
作者
Bui, Mai [1 ]
Gunawan, Indra [2 ]
Verheyen, Vincent [3 ]
Feron, Paul [4 ]
Meuleman, Erik [5 ]
机构
[1] Monash Univ, Fac Sci, Sch Appl Sci & Engn, Clayton, Vic 3800, Australia
[2] Univ Adelaide, Entrepreneurship Commercialisat & Innovat Ctr, Adelaide, SA 5005, Australia
[3] Federat Univ Australia, Sch Appl & Biomed Sci, Churchill, Vic 3842, Australia
[4] CSIRO Energy Flagship Newcastle, Mayfield West, NSW 2304, Australia
[5] CSIRO Energy Flagship Melbourne, Clayton, Vic 3168, Australia
关键词
Post-combustion CO2 capture; Flexible operation; Pilot plant; Transient; Dynamic modelling; MODEL-PREDICTIVE CONTROL; MEA ABSORPTION PROCESSES; SOLVENT REGENERATION; CONTROL STRATEGIES; PLANTWIDE CONTROL; OPTIMIZATION; DEGRADATION; ELECTRICITY; SIMULATION; DESIGN;
D O I
10.1016/j.ijggc.2015.12.016
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Flexible operation has the potential to significantly improve the economic viability of post-combustion CO2 capture (PCC). However, the impact of disturbances from flexible operation of the PCC process is unclear. The purpose of this study was to investigate the effects of flexible operation in a PCC pilot plant by implementing step-changes for improved dynamic data reliability. The flexible operation campaign was conducted at the CSIRO PCC pilot plant at AGL Loy Yang using monoethanolamine (MEA) absorbent. The pilot plant was operated under a broad range of transient conditions (changing flue gas flow, liquid absorbent flow and steam pressure) to capture the dynamics of a PCC process during flexible operation. The study demonstrated that the dynamics of flue gas flow rate was faster than absorbent flow rate. The greatest CO2 removal% was achieved at the lowest flue gas flow rate or at the highest absorbent flow rate; however, the latter provided improved energy efficiency. The steam pressure parameter could adjust the temperature of all columns simultaneously which can be used to compensate for effects from ambient conditions or heat losses. These results verify the technical feasibility of flexible PCC operation and provide a suitable dataset for dynamic model validation. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:188 / 203
页数:16
相关论文
共 50 条
  • [41] Study of novel solvent for CO2 post-combustion capture
    Hadri, Nabil E. L.
    Dang Viet Quang
    Abu-Zahra, Mohammad R. M.
    CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE, 2015, 75 : 2268 - 2286
  • [42] New solvent blends for post-combustion CO2 capture
    Knuutila, Hanna K.
    Rennemo, Rune
    Ciftja, Arlinda F.
    GREEN ENERGY & ENVIRONMENT, 2019, 4 (04) : 439 - 452
  • [43] Integration of post-combustion CO2 capture with aluminium production
    Mathisen, Anette
    Ariyarathna, Sanoja
    Eldrup, Nils
    Muller, Gunn-Iren
    Melaaen, Morten
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 6602 - 6610
  • [44] Corrosion in CO2 Post-Combustion Capture with Alkanolamines - A Review
    Kittel, J.
    Gonzalez, S.
    OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2014, 69 (05): : 915 - 929
  • [45] Modeling post-combustion CO2 capture with amine solvents
    Leonard, Gregoire
    Heyen, Georges
    21ST EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2011, 29 : 1768 - 1772
  • [46] Assessment of Membrane Performance for Post-Combustion CO2 Capture
    Liu, Liang
    Lee, Jung Hyun
    Han, Sang Hoon
    Ha, Seong Yong
    Chen, George Q.
    Kentish, Sandra E.
    Yeo, Jeong-Gu
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (01) : 777 - 785
  • [47] Ionic liquids as an alternative to CO2 post-combustion capture
    Gimeno, M. P.
    Mayoral, M. C.
    Andres, J. M.
    BOLETIN DEL GRUPO ESPANOL DEL CARBON, 2013, (30): : 2 - 5
  • [48] Numerical Evaluation of CO2 Capture on Post-combustion Processes
    Chavez, Rosa-Hilda
    Guadarrama, Javier J.
    PRES15: PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, 2015, 45 : 271 - 276
  • [49] Capacity and kinetics of solvents for post-combustion CO2 capture
    Bruder, Peter
    Svendsen, Hallvard F.
    6TH TRONDHEIM CONFERENCE ON CO2 CAPTURE, TRANSPORT AND STORAGE, 2012, 23 : 45 - 54
  • [50] Development of adsorbent technologies for post-combustion CO2 capture
    Drage, T. C.
    Smith, K. M.
    Pevida, C.
    Arenillas, A.
    Snape, C. E.
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 881 - 884