Mean Value Inequalities for Motzkin Numbers

被引:0
作者
Agoh, Takashi [1 ]
Alzer, Horst [2 ]
机构
[1] Tokyo Univ Sci, Dept Math, Noda, Chiba 2788510, Japan
[2] Morsbacher Str 10, D-51545 Waldbrol, Germany
关键词
Motzkin number; inequality; mean value;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following up on results of Aigner, we present some inequalities for Motzkin numbers M-n. In particular, we prove that the sequence (1/M-n)(n >= 1) is strictly convex.
引用
收藏
页数:7
相关论文
共 5 条
  • [1] Motzkin numbers
    Aigner, M
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (06) : 663 - 675
  • [2] MOTZKIN NUMBERS
    DONAGHEY, R
    SHAPIRO, LW
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1977, 23 (03) : 291 - 301
  • [3] Sloane N. J. A., 2020, The on-line encyclopedia of integer sequences
  • [4] Stanley Richard P., 1999, Enumerative Combinatorics, V2
  • [5] Sun H, 2014, J INTEGER SEQ, V17