Improved charge transport ability of polymer solar cells by using NPB/MoO3 as anode buffer layer

被引:19
|
作者
Li, Ping [1 ,2 ,3 ]
Wu, Bo [1 ]
Yang, You Chang [1 ]
Huang, Hai Shen [1 ]
Yang, Xiu De [1 ,2 ,3 ]
Zhou, Guang Dong [2 ,3 ]
Song, Qun Liang [2 ,3 ]
机构
[1] Zunyi Normal Univ, Sch Phys & Elect Sci, Zunyi 563006, Peoples R China
[2] Southwest Univ, Fac Mat & Energy, Inst Clean Energy & Adv Mat, Chongqing 400715, Peoples R China
[3] Chongqing Key Lab Adv Mat & Technol Clean Energy, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Polymer solar cells; NPB; MoO3; Hole extraction layer; IMPEDANCE SPECTROSCOPY; PHOTOVOLTAIC CELLS; OXIDE; PERFORMANCE; EFFICIENCY; FILM; NANOPARTICLES; MOLYBDENUM; INTERFACE; STABILITY;
D O I
10.1016/j.solener.2018.04.020
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Efficient polymer solar cells were fabricated with regioregular poly 3-hexylthiophene (P3HT):(6,6)-phenyl C61 butyric acid methyl ester (PCBM)) as active layer and molybdenum trioxide (MoO3) and (N,N'-diphenyl)-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine (NPB) as buffer layers. The results of transient photocurrent and electrochemical impedance spectrometry of device indicate that the insertion of NPB layer between the active layer and MoO3 layer is critical to the enhanced performance. It can effectively prevent charge recombination at the interface of MoO3 hole extraction layer, reduce interfacial resistance due to the formation of Ohmic contact and enhance the exciton dissociation because of the newly formed NPB/PCBM dissociation interface. The optimized thickness of NPB layer is 5 nm, resulting in maximized power conversion efficiency (PCE) of 3.94% under AM1.5G 100 mW cm(-2) illumination.
引用
收藏
页码:212 / 216
页数:5
相关论文
共 50 条
  • [31] Plasmonic effects of Ag nanoparticles for absorption enhancement in polymer solar cells with MoO3 passivation layer
    Shamjid, P.
    Abhijith, T.
    Vivek, P.
    Joel, C. S.
    Reddy, V. S.
    PHYSICA B-CONDENSED MATTER, 2019, 560 : 174 - 184
  • [32] Improvement of MoO3/Ag/MoO3 multilayer transparent electrodes for organic solar cells by using UV-ozone treated MoO3 layer
    Kao, Po-Ching
    Hsieh, Cheng-Jie
    Chen, Ze-Hui
    Chen, Sy-Hann
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 186 : 131 - 141
  • [33] MoO3/CuI hybrid buffer layer for the optimization of organic solar cells based on a donor-acceptor triphenylamine
    Bernede, Jean Christian
    Cattin, Linda
    Makha, Mohammed
    Jeux, Victorien
    Leriche, Philippe
    Roncali, Jean
    Froger, Vincent
    Morsli, Mustapha
    Addou, Mohammed
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 110 : 107 - 114
  • [34] MoO3 buffer layer effect on photovoltaic properties of interpenetrating heterojunction type organic solar cells
    Hori, Tetsuro
    Shibata, Takeshi
    Kittichungchit, Varutt
    Moritou, Hiroki
    Sakai, Jun
    Kubo, Hitoshi
    Fujii, Akihiko
    Ozaki, Masanori
    THIN SOLID FILMS, 2009, 518 (02) : 522 - 525
  • [35] Anode Interface Modification of Organic Solar Cells with Solution-Prepared MoO3
    Li Yanping
    Yu Huangzhong
    Dong Yifan
    Huang Xinxin
    PROGRESS IN CHEMISTRY, 2016, 28 (08) : 1170 - 1185
  • [36] PTFE/MoO3 Anode Bilayer Buffer Layers for Improved Performance in PCDTBT:PC71BM Blend Organic Solar Cells
    Zhang, Panpan
    Xu, Xu
    Dang, Yang
    Huang, Shuai
    Chen, Xin
    Kang, Bonan
    Silva, S. R. P.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (12): : 6473 - 6479
  • [37] Enhanced charge carrier transport in spray-cast organic solar cells using solution processed MoO3 micro arrays
    Ji, Ran
    Cheng, Jiang
    Yang, Xin
    Yu, Junsheng
    Li, Lu
    RSC ADVANCES, 2017, 7 (06) : 3059 - 3065
  • [38] MoO3/Ag/Al/ZnO intermediate layer for inverted tandem polymer solar cells
    Qing Jian
    Zhong Zhen-Feng
    Liu Yong
    Li Bao-Jun
    Zhou Xiang
    CHINESE PHYSICS B, 2014, 23 (03)
  • [39] Investigation of low resistance transparent MoO3/Ag/MoO3 multilayer and application as anode in organic solar cells
    Cattin, L.
    Morsli, M.
    Dahou, F.
    Abe, S. Yapi
    Khelil, A.
    Bernede, J. C.
    THIN SOLID FILMS, 2010, 518 (16) : 4560 - 4563
  • [40] Effect of anode buffer layer modification on the performance of polymer solar cells
    Li X.
    Xu D.-H.
    Zhao J.
    Geng A.-C.
    Deng Z.-B.
    Faguang Xuebao/Chinese Journal of Luminescence, 2016, 37 (03): : 321 - 326