Single-Image Super-Resolution via Linear Mapping of Interpolated Self-Examples

被引:95
作者
Bevilacqua, Marco [1 ]
Roumy, Aline [2 ]
Guillemot, Christine [2 ]
Morel, Marie-Line Alberi [3 ]
机构
[1] IMT Inst Adv Studies Lucca, I-55100 Lucca, Italy
[2] Inst Natl Rech Informat & Automat, F-35042 Rennes, France
[3] Alcatel Lucent, Bell Labs, Ctr Villarceaux, F-91620 Nozay, France
关键词
Super resolution; example-based; regression; neighbor embedding;
D O I
10.1109/TIP.2014.2364116
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel example-based single-image superresolution procedure that upscales to high-resolution (HR) a given low-resolution (LR) input image without relying on an external dictionary of image examples. The dictionary instead is built from the LR input image itself, by generating a double pyramid of recursively scaled, and subsequently interpolated, images, from which self-examples are extracted. The upscaling procedure is multipass, i.e., the output image is constructed by means of gradual increases, and consists in learning special linear mapping functions on this double pyramid, as many as the number of patches in the current image to upscale. More precisely, for each LR patch, similar self-examples are found, and, because of them, a linear function is learned to directly map it into its HR version. Iterative back projection is also employed to ensure consistency at each pass of the procedure. Extensive experiments and comparisons with other state-of-the-art methods, based both on external and internal dictionaries, show that our algorithm can produce visually pleasant upscalings, with sharp edges and well reconstructed details. Moreover, when considering objective metrics, such as Peak signal-to-noise ratio and Structural similarity, our method turns out to give the best performance.
引用
收藏
页码:5334 / 5347
页数:14
相关论文
共 33 条
[31]  
Zhang KB, 2012, PROC CVPR IEEE, P1114, DOI 10.1109/CVPR.2012.6247791
[32]   Single Image Super-Resolution With Non-Local Means and Steering Kernel Regression [J].
Zhang, Kaibing ;
Gao, Xinbo ;
Tao, Dacheng ;
Li, Xuelong .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (11) :4544-4556
[33]  
Zontak M, 2011, PROC CVPR IEEE, P977, DOI 10.1109/CVPR.2011.5995401