Nonparametric wavelet regression for binary response

被引:8
作者
Antoniadis, A [1 ]
Leblanc, F [1 ]
机构
[1] Univ Grenoble 1, Lab IMAG LMC, F-38041 Grenoble 9, France
关键词
wavelets; multiresolution analysis; nonparametric binary regression estimation; binning; smoothing; logistic regression;
D O I
10.1080/02331880008802713
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Nonparametric regression methods have become an elegant and practical option in model building. An advantage of the nonparametric regression approach is that if a latent parametric model exists then it can be revealed by simple visual analysis of the nonparametric regression curve and selected for further analysis. This is particularly important for binary regression due to the lack of simple graphical tools for data exploration. In this article, we discuss the application of linear wavelet regression to the binary regression problem. We show that wavelet regression is consistent, attains minimax rates and is a simpler and faster alternative to generalized smooth models. As in other nonparametric smoothing problems, the choice of smoothing parameter is critical to the performance of the estimator and the appearance of the resulting estimate. In this paper, we discuss the use of a selection criterion based on Mallows' CL The usefulness of the methods is explored on a real data set and in a small simulation study.
引用
收藏
页码:183 / 213
页数:31
相关论文
共 50 条
[31]   Robust nonparametric kernel regression estimator [J].
Zhao, Ge ;
Ma, Yanyuan .
STATISTICS & PROBABILITY LETTERS, 2016, 116 :72-79
[32]   A wavelet approach to nonparametric empirical Bayes estimation [J].
Pensky, M .
AMERICAN STATISTICAL ASSOCIATION - 1996 PROCEEDINGS OF THE SECTION ON BAYESIAN STATISTICAL SCIENCE, 1996, :196-201
[33]   NONPARAMETRIC ESTIMATION FOR FUNCTIONAL DATA BY WAVELET THRESHOLDING [J].
Chesneau, Christophe ;
Kachour, Maher ;
Maillot, Bertrand .
REVSTAT-STATISTICAL JOURNAL, 2013, 11 (02) :211-230
[34]   Data classification with binary response through the Boosting algorithm and logistic regression [J].
de Menezes, Fortunato S. ;
Liska, Gilberto R. ;
Cirillo, Marcelo A. ;
Vivanco, Mario J. F. .
EXPERT SYSTEMS WITH APPLICATIONS, 2017, 69 :62-73
[35]   On a wavelet-based method of estimating a regression function [J].
Doosti, Hassan ;
Chaubey, Yogendra P. ;
Niroumand, Hosein Ali .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2007, 36 (9-12) :2083-2098
[36]   Robust binary regression [J].
Hosseinian, Sahar ;
Morgenthaler, Stephan .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (04) :1497-1509
[37]   Penalized wavelet monotone regression [J].
Antoniadis, Anestis ;
Bigot, Jeremie ;
Gijbels, Irene .
STATISTICS & PROBABILITY LETTERS, 2007, 77 (16) :1608-1621
[38]   Optimal testing for additivity in multiple nonparametric regression [J].
Abramovich, Felix ;
De Feis, Italia ;
Sapatinas, Theofanis .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2009, 61 (03) :691-714
[39]   Variable selection by stepwise slicing in nonparametric regression [J].
Kulasekera, KB .
STATISTICS & PROBABILITY LETTERS, 2001, 51 (04) :327-336
[40]   NONPARAMETRIC REGRESSION WITH HOMOGENEOUS GROUP TESTING DATA [J].
Delaigle, Aurore ;
Hall, Peter .
ANNALS OF STATISTICS, 2012, 40 (01) :131-158