Nonparametric wavelet regression for binary response

被引:8
|
作者
Antoniadis, A [1 ]
Leblanc, F [1 ]
机构
[1] Univ Grenoble 1, Lab IMAG LMC, F-38041 Grenoble 9, France
关键词
wavelets; multiresolution analysis; nonparametric binary regression estimation; binning; smoothing; logistic regression;
D O I
10.1080/02331880008802713
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Nonparametric regression methods have become an elegant and practical option in model building. An advantage of the nonparametric regression approach is that if a latent parametric model exists then it can be revealed by simple visual analysis of the nonparametric regression curve and selected for further analysis. This is particularly important for binary regression due to the lack of simple graphical tools for data exploration. In this article, we discuss the application of linear wavelet regression to the binary regression problem. We show that wavelet regression is consistent, attains minimax rates and is a simpler and faster alternative to generalized smooth models. As in other nonparametric smoothing problems, the choice of smoothing parameter is critical to the performance of the estimator and the appearance of the resulting estimate. In this paper, we discuss the use of a selection criterion based on Mallows' CL The usefulness of the methods is explored on a real data set and in a small simulation study.
引用
收藏
页码:183 / 213
页数:31
相关论文
共 50 条
  • [1] Confidence sets for nonparametric wavelet regression
    Genovese, CR
    Wasserman, L
    ANNALS OF STATISTICS, 2005, 33 (02): : 698 - 729
  • [2] Bayesian wavelet networks for nonparametric regression
    Holmes, CC
    Mallick, BK
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (01): : 27 - 35
  • [3] Nonparametric Wavelet Regression Based on Biased Data
    Chesneau, Christophe
    Shirazi, Esmaeil
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (13) : 2642 - 2658
  • [4] A Fully Nonparametric Modeling Approach to Binary Regression
    DeYoreo, Maria
    Kottas, Athanasios
    BAYESIAN ANALYSIS, 2015, 10 (04): : 821 - 847
  • [5] ROBUST NONPARAMETRIC ESTIMATION VIA WAVELET MEDIAN REGRESSION
    Brown, Lawrence D.
    Cai, T. Tony
    Zhou, Harrison H.
    ANNALS OF STATISTICS, 2008, 36 (05): : 2055 - 2084
  • [6] Wavelet regression estimation in nonparametric mixed effect models
    Angelini, C
    De Canditiis, D
    Leblanc, F
    JOURNAL OF MULTIVARIATE ANALYSIS, 2003, 85 (02) : 267 - 291
  • [7] Local polynomial regression for binary response
    Aragaki, A
    Altman, N
    MINING AND MODELING MASSIVE DATA SETS IN SCIENCE, ENGINEERING, AND BUSINESS WITH A SUBTHEME IN ENVIRONMENTAL STATISTICS, 1997, 29 (01): : 467 - 472
  • [8] Penalized wavelet nonparametric univariate logistic regression for irregular spaced data
    Amato, Umberto
    Antoniadis, Anestis
    De Feis, Italia
    Gijbels, Irene
    STATISTICS, 2023,
  • [9] Penalized wavelet nonparametric univariate logistic regression for irregular spaced data
    Amato, Umberto
    Antoniadis, Anestis
    De Feis, Italia
    Gijbels, Irene
    STATISTICS, 2023, 57 (05) : 1037 - 1060
  • [10] A Nonparametric Regression Model With Tree-Structured Response
    Wang, Yuan
    Marron, J. S.
    Aydin, Burcu
    Ladha, Alim
    Bullitt, Elizabeth
    Wang, Haonan
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (500) : 1272 - 1285