DUALITY THEORY FOR PORTFOLIO OPTIMISATION UNDER TRANSACTION COSTS

被引:27
|
作者
Czichowsky, Christoph [1 ]
Schachermayer, Walter [2 ]
机构
[1] Univ London London Sch Econ & Polit Sci, Dept Math, Columbia House,Houghton St, London WC2A 2AE, England
[2] Univ Vienna, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会; 瑞士国家科学基金会; 欧洲研究理事会;
关键词
Utility maximisation; proportional transaction costs; convex duality; shadow prices; supermartingale deflators; optional strong supermartingales; predictable strong supermartingales; logarithmic utility; TRADING STRATEGIES; OPTIMAL INVESTMENT; MARKET; SELECTION; ARBITRAGE;
D O I
10.1214/15-AAP1136
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of portfolio optimisation with general cadlag price processes in the presence of proportional transaction costs. In this context, we develop a general duality theory. In particular, we prove the existence of a dual optimiser as well as a shadow price process in an appropriate generalised sense. This shadow price is defined by means of a "sandwiched" process consisting of a predictable and an optional strong supermartingale, and pertains to all strategies that remain solvent under transaction costs. We provide examples showing that, in the general setting we study, the shadow price processes have to be of such a generalised form.
引用
收藏
页码:1888 / 1941
页数:54
相关论文
共 50 条
  • [21] Doubly elastic net regularized online portfolio optimization with transaction costs
    Yao, Xiaoting
    Zhang, Na
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [22] Aggregating exponential gradient expert advice for online portfolio selection under transaction costs
    Zhang, Yong
    Li, Jiahao
    Yang, Xingyu
    Lin, Hong
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2023, 74 (08) : 1940 - 1953
  • [23] Passive portfolio management over a finite horizon with a target liquidation value under transaction costs and solvency constraints
    Baccarin, Stefano
    Marazzina, Daniele
    IMA JOURNAL OF MANAGEMENT MATHEMATICS, 2016, 27 (04) : 471 - 504
  • [24] Dynamic portfolio choice with return predictability and transaction costs
    Ma, Guiyuan
    Siu, Chi Chung
    Zhu, Song-Ping
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 278 (03) : 976 - 988
  • [25] OPTIMAL PORTFOLIO SELECTION STRATEGIES IN THE PRESENCE OF TRANSACTION COSTS
    Meng, Qiang
    Weerasinghe, Ananda
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2006, 9 (04) : 619 - 641
  • [26] ON USING SHADOW PRICES IN PORTFOLIO OPTIMIZATION WITH TRANSACTION COSTS
    Kallsen, J.
    Muhle-Karbe, J.
    ANNALS OF APPLIED PROBABILITY, 2010, 20 (04) : 1341 - 1358
  • [27] Parameter Uncertainty in Multiperiod Portfolio Optimization with Transaction Costs
    DeMiguel, Victor
    Martin-Utrera, Alberto
    Nogales, Francisco J.
    JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS, 2015, 50 (06) : 1443 - 1471
  • [28] Optimal consumption and investment under transaction costs*
    Hobson, David
    Tse, Alex S. L.
    Zhu, Yeqi
    MATHEMATICAL FINANCE, 2019, 29 (02) : 483 - 506
  • [29] Pathwise superhedging under proportional transaction costs
    Kim, Mun-Chol
    Ryom, Song-Chol
    MATHEMATICS AND FINANCIAL ECONOMICS, 2022, 16 (04) : 713 - 747
  • [30] Transaction Costs, Portfolio Characteristics, and Mutual Fund Performance
    Busse, Jeffrey A.
    Chordia, Tarun
    Jiang, Lei
    Tang, Yuehua
    MANAGEMENT SCIENCE, 2021, 67 (02) : 1227 - 1248