DUALITY THEORY FOR PORTFOLIO OPTIMISATION UNDER TRANSACTION COSTS

被引:27
|
作者
Czichowsky, Christoph [1 ]
Schachermayer, Walter [2 ]
机构
[1] Univ London London Sch Econ & Polit Sci, Dept Math, Columbia House,Houghton St, London WC2A 2AE, England
[2] Univ Vienna, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会; 瑞士国家科学基金会; 欧洲研究理事会;
关键词
Utility maximisation; proportional transaction costs; convex duality; shadow prices; supermartingale deflators; optional strong supermartingales; predictable strong supermartingales; logarithmic utility; TRADING STRATEGIES; OPTIMAL INVESTMENT; MARKET; SELECTION; ARBITRAGE;
D O I
10.1214/15-AAP1136
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of portfolio optimisation with general cadlag price processes in the presence of proportional transaction costs. In this context, we develop a general duality theory. In particular, we prove the existence of a dual optimiser as well as a shadow price process in an appropriate generalised sense. This shadow price is defined by means of a "sandwiched" process consisting of a predictable and an optional strong supermartingale, and pertains to all strategies that remain solvent under transaction costs. We provide examples showing that, in the general setting we study, the shadow price processes have to be of such a generalised form.
引用
收藏
页码:1888 / 1941
页数:54
相关论文
共 50 条
  • [1] Shadow prices, fractional Brownian motion, and portfolio optimisation under transaction costs
    Czichowsky, Christoph
    Peyre, Remi
    Schachermayer, Walter
    Yang, Junjian
    FINANCE AND STOCHASTICS, 2018, 22 (01) : 161 - 180
  • [2] Shadow prices, fractional Brownian motion, and portfolio optimisation under transaction costs
    Christoph Czichowsky
    Rémi Peyre
    Walter Schachermayer
    Junjian Yang
    Finance and Stochastics, 2018, 22 : 161 - 180
  • [3] Optimal investment with random endowments and transaction costs: duality theory and shadow prices
    Bayraktar, Erhan
    Yu, Xiang
    MATHEMATICS AND FINANCIAL ECONOMICS, 2019, 13 (02) : 253 - 286
  • [4] Optimal investment with random endowments and transaction costs: duality theory and shadow prices
    Erhan Bayraktar
    Xiang Yu
    Mathematics and Financial Economics, 2019, 13 : 253 - 286
  • [5] Transaction Costs, Shadow Prices, and Duality in Discrete Time
    Czichowsky, Christoph
    Muhle-Karbe, Johannes
    Schachermayer, Walter
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2014, 5 (01): : 258 - 277
  • [6] The dual optimizer for the growth-optimal portfolio under transaction costs
    Gerhold, S.
    Muhle-Karbe, J.
    Schachermayer, W.
    FINANCE AND STOCHASTICS, 2013, 17 (02) : 325 - 354
  • [7] Investment portfolio optimisation with transaction costs and constraints using model predictive control
    Dombrovskiy, VV
    Dombrovskiy, DV
    Lyashenko, EA
    KORUS 2004, VOL 3, PROCEEDINGS, 2004, : 202 - 205
  • [8] A squirrel search algorithm for the multi-objective portfolio optimisation with transaction costs
    Salb, M. Nassir-Ud-Diin Ebrahim
    Gopaul, Ashvin
    Cheeneebash, Jayrani
    SCIENTIFIC AFRICAN, 2024, 24
  • [9] Worst-case portfolio optimization with proportional transaction costs
    Belak, Christoph
    Menkens, Olaf
    Sass, Joern
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2015, 87 (04) : 623 - 663
  • [10] A Primer on Portfolio Choice with Small Transaction Costs
    Muhle-Karbe, Johannes
    Reppen, Max
    Soner, H. Mete
    ANNUAL REVIEW OF FINANCIAL ECONOMICS, VOL 9, 2017, 9 : 301 - 331