DUALITY THEORY FOR PORTFOLIO OPTIMISATION UNDER TRANSACTION COSTS

被引:28
作者
Czichowsky, Christoph [1 ]
Schachermayer, Walter [2 ]
机构
[1] Univ London London Sch Econ & Polit Sci, Dept Math, Columbia House,Houghton St, London WC2A 2AE, England
[2] Univ Vienna, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
瑞士国家科学基金会; 欧洲研究理事会; 奥地利科学基金会;
关键词
Utility maximisation; proportional transaction costs; convex duality; shadow prices; supermartingale deflators; optional strong supermartingales; predictable strong supermartingales; logarithmic utility; TRADING STRATEGIES; OPTIMAL INVESTMENT; MARKET; SELECTION; ARBITRAGE;
D O I
10.1214/15-AAP1136
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of portfolio optimisation with general cadlag price processes in the presence of proportional transaction costs. In this context, we develop a general duality theory. In particular, we prove the existence of a dual optimiser as well as a shadow price process in an appropriate generalised sense. This shadow price is defined by means of a "sandwiched" process consisting of a predictable and an optional strong supermartingale, and pertains to all strategies that remain solvent under transaction costs. We provide examples showing that, in the general setting we study, the shadow price processes have to be of such a generalised form.
引用
收藏
页码:1888 / 1941
页数:54
相关论文
共 18 条
[1]   MARTINGALES AND ARBITRAGE IN SECURITIES MARKETS WITH TRANSACTION COSTS [J].
JOUINI, E ;
KALLAL, H .
JOURNAL OF ECONOMIC THEORY, 1995, 66 (01) :178-197
[2]  
Kabanov YuM., 1999, FINANC STOCH, V3, P237, DOI [DOI 10.1007/s007800050061, DOI 10.1007/S007800050061]
[3]   ON USING SHADOW PRICES IN PORTFOLIO OPTIMIZATION WITH TRANSACTION COSTS [J].
Kallsen, J. ;
Muhle-Karbe, J. .
ANNALS OF APPLIED PROBABILITY, 2010, 20 (04) :1341-1358
[4]   Existence of shadow prices in finite probability spaces [J].
Kallsen, Jan ;
Muhle-Karbe, Johannes .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2011, 73 (02) :251-262
[5]   MARTINGALE AND DUALITY METHODS FOR UTILITY MAXIMIZATION IN AN INCOMPLETE MARKET [J].
KARATZAS, I ;
LEHOCZKY, JP ;
SHREVE, SE ;
XU, GL .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (03) :702-730
[6]   The numeraire portfolio in semimartingale financial models [J].
Karatzas, Ioannis ;
Kardaras, Constantinos .
FINANCE AND STOCHASTICS, 2007, 11 (04) :447-493
[7]   Market viability via absence of arbitrage of the first kind [J].
Kardaras, Constantinos .
FINANCE AND STOCHASTICS, 2012, 16 (04) :651-667
[8]  
Kramkov D, 1999, ANN APPL PROBAB, V9, P904
[9]   On optimal portfolio trading strategies for an investor facing transactions costs in a continuous trading market [J].
Loewenstein, M .
JOURNAL OF MATHEMATICAL ECONOMICS, 2000, 33 (02) :209-228
[10]   PORTFOLIO SELECTION WITH TRANSACTIONS COSTS [J].
MAGILL, MJP ;
CONSTANTINIDES, GM .
JOURNAL OF ECONOMIC THEORY, 1976, 13 (02) :245-263