Alternate Poles Wound Flux-Switching Permanent-Magnet Brushless AC Machines

被引:89
|
作者
Owen, Richard L. [1 ]
Zhu, Z. Q. [1 ]
Thomas, Arwyn S. [1 ]
Jewell, Geraint W. [1 ]
Howe, David [1 ]
机构
[1] Univ Sheffield, Dept Elect & Elect Engn, Sheffield S1 3JF, S Yorkshire, England
关键词
Alternate poles wound; brushless machine; flux switching; modular machine; permanent-magnet (PM) machine; single-layer winding; REVERSAL MACHINE; MOTORS; DESIGN; TORQUE; SLOT; PERFORMANCE;
D O I
10.1109/TIA.2009.2039913
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Flux-switching permanent-magnet (FSPM) brushless machines have emerged as an attractive machine type by virtue of their high torque densities, simple and robust rotor structure, and the fact that permanent magnets and coils are both located on the stator. Both 2-D and 3-D finite element analyses are employed to compare the performance of a conventional all poles wound (double-layer winding) topology with that of three modular alternate poles wound (single-layer winding) topologies, in terms of output torque, flux-linkage, back EMF, and inductances. It is shown that the FSPM machine can be designed in this way without incurring a significant performance penalty, but that some degree of rotor skewing or a variation in stator and rotor pole combination may be required in order to maintain a sinusoidal back-EMF waveform and reduce the torque ripple. Experimental validation is reported for both conventional all poles wound and alternate poles wound FSPM machine topologies.
引用
收藏
页码:790 / 797
页数:8
相关论文
共 50 条
  • [1] Sandwiched Flux-Switching Permanent-Magnet Brushless AC Machines using V-shape Magnets
    Mo, Lihong
    Quan, Li
    Chen, Yunyun
    Qiu, Haibing
    2013 9TH IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2013, : 458 - 462
  • [2] Fault-Tolerant Flux-Switching Permanent Magnet Brushless AC Machines
    Owen, R. L.
    Zhu, Z. Q.
    Thomas, A. S.
    Jewell, G. W.
    Howe, D.
    2008 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, VOLS 1-5, 2008, : 1965 - 1972
  • [3] Advanced Flux-Switching Permanent Magnet Brushless Machines
    Zhu, Z. Q.
    Chen, J. T.
    IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (06) : 1447 - 1453
  • [4] Stator and Rotor Pole Combinations for Multi-Tooth Flux-Switching Permanent-Magnet Brushless AC Machines
    Chen, J. T.
    Zhu, Z. Q.
    Howe, D.
    IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (12) : 4659 - 4667
  • [5] Research on the Influence of Rotor Poles Number on Performances of Rotor Permanent-Magnet Flux-Switching Machines
    Su, Peng
    Hua, Wei
    Hou, Chuang
    Hu, Mingjin
    2017 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2017, : 2374 - 2381
  • [6] The Influence of Winding Location in Flux-Switching Permanent-Magnet Machines
    Zhang, Hengliang
    Hua, Wei
    Hu, Mingjin
    Gerada, David
    Gerada, Chris
    IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (07)
  • [7] Multiphase Flux-Switching Permanent-Magnet Brushless Machine for Aerospace Application
    Thomas, Arwyn S.
    Zhu, Z. Q.
    Owen, Richard L.
    Jewell, Geraint W.
    Howe, David
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2009, 45 (06) : 1971 - 1981
  • [8] Magnetic Stress and Vibration Analysis of the Flux-Switching Permanent-Magnet Machines
    Fang, Haiyang
    Qu, Ronghai
    Li, Dawei
    Li, Jian
    2016 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2016,
  • [9] Analysis of the Torque Production Mechanism for Flux-Switching Permanent-Magnet Machines
    McFarland, James D.
    Jahns, Thomas M.
    EL-Refaie, Ayman M.
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2015, 51 (04) : 3041 - 3049
  • [10] A Dynamic Model for Bearingless Flux-Switching Permanent-Magnet Linear Machines
    Sokolov, Maksitn
    Saarakkala, Seppo E.
    Hosseinzadeh, Reza
    Hinkkanen, Marko
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2020, 35 (03) : 1218 - 1227