Two-scale homogenization study of a Reynolds-rod elastohydrodynamic model

被引:9
作者
Bayada, G
Cid, B
Vázquez, C
机构
[1] INSA, CNRS, UMR 5514, F-69691 Villeurbanne, France
[2] INSA, CNRS, UMR 5585, F-69691 Villeurbanne, France
[3] Univ Vigo, Dept Appl Math 2, Vigo 36280, Spain
[4] Univ A Coruna, Fac Informat, Dept Math, La Coruna 15071, Spain
关键词
elastohydrodynamic lubrication; Reynolds-rod models; elliptic variational inequalities; homogenization; two-scale convergence;
D O I
10.1142/S0218202503002489
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the existence of solution for a coupled system of variational inequalities with highly oscillating coefficients modelling a micro-elastohydrodynamic lubrica tion problem is stated. Moreover, by means of two-scale convergence techniques, the limit coupled models when the frequency of oscillation tends to zero are established for different amplitude-frequency rates. The effect of roughness appears to be limited to one of the coupled nonlinear equations, either the elastic one or the hydrodynamic one. Finally, some numerical examples to illustrate both the qualitative behavior of the solution and the theoretical convergence results are presented.
引用
收藏
页码:259 / 293
页数:35
相关论文
共 15 条
[1]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[2]  
Artola M., 1982, ANN FAC SCI TOULOUSE, V4, P1, DOI [10.5802/afst.572, DOI 10.5802/AFST.572]
[3]   A DOUBLE SCALE ANALYSIS APPROACH OF THE REYNOLDS ROUGHNESS COMMENTS AND APPLICATION TO THE JOURNAL BEARING [J].
BAYADA, G ;
FAURE, JB .
JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 1989, 111 (02) :323-330
[4]   Homogenization of variational equations and inequalities with small oscillating parameters. Application to the study of thin film unstationary lubrication flow [J].
Bayada, G ;
Ciuperca, S ;
Jai, M .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE, 2000, 328 (11) :819-824
[5]   THE TRANSITION BETWEEN THE STOKES EQUATIONS AND THE REYNOLDS-EQUATION - A MATHEMATICAL PROOF [J].
BAYADA, G ;
CHAMBAT, M .
APPLIED MATHEMATICS AND OPTIMIZATION, 1986, 14 (01) :73-93
[6]  
BAYADA G, 1986, J MEC THEOR APPL, V5, P703
[7]   EXISTENCE OF A SOLUTION FOR A LUBRICATION PROBLEM IN ELASTIC JOURNAL-BEARING DEVICES WITH THIN BEARING [J].
BAYADA, G ;
DURANY, J ;
VAZQUEZ, C .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1995, 18 (04) :255-266
[8]   Mathematical analysis of some new Reynolds-rod elastohydrodynamic models [J].
Bayada, G ;
Cid, B ;
Vázquez, C .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2001, 24 (15) :1169-1187
[9]  
Cameron A., 1981, BASIC LUBRICATION TH
[10]  
CIMATTI G, 1986, INT J ENG SCI, V24, P827, DOI 10.1016/0020-7225(86)90116-3