Face Image Scanning for Differentiation of Child/Adult images using a CNN-Based Model

被引:0
|
作者
Ahmed, Mirza Jamal [1 ]
Abdullah, Nurul Aza [2 ]
机构
[1] Univ Tun Hussain Malaysia, FSKT, Johar, Malaysia
[2] Univ Tun Hussain nN Malaysia, Johar, Malaysia
来源
2021 IEEE ASIA-PACIFIC CONFERENCE ON COMPUTER SCIENCE AND DATA ENGINEERING (CSDE) | 2021年
关键词
CNN; Machine Learning; Image Classification; Digital Image Forensics; CSA; Computer Vision;
D O I
10.1109/CSDE53843.2021.9718484
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Differentiating child and adult images is a crucial requirement for many applications. This paper proposes an approach using a Convolutional Neural Network (CNN) model to distinguish between children's images from adults. In contrast to predetermined face landmarks, the suggested approach learns complex face features and achieves 85% accuracy regardless of variation in age, gender, race, or ethnicity. The approach could be used to leverage the performance of digital image forensic, security control and, surveillance monitoring, and robotics.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Image Infringement Judgement with CNN-based Face Recognition
    Li, Jiawei
    2022 INTERNATIONAL CONFERENCE ON BIG DATA, INFORMATION AND COMPUTER NETWORK (BDICN 2022), 2022, : 610 - 615
  • [2] A Degradation Type Adaptive and Deep CNN-Based Image Classification Model for Degraded Images
    Liu, Huanhua
    Wang, Wei
    Liu, Hanyu
    Yi, Shuheng
    Yu, Yonghao
    Yao, Xunwen
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 138 (01): : 459 - 472
  • [3] Effects of Image Degradation and Degradation Removal to CNN-Based Image Classification
    Pei, Yanting
    Huang, Yaping
    Zou, Qi
    Zhang, Xingyuan
    Wang, Song
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (04) : 1239 - 1253
  • [4] A CNN-BASED MODEL FOR PANSHARPENING OF WORLDVIEW-3 IMAGES
    Vitale, Sergio
    Ferraioli, Giampaolo
    Scarpa, Giuseppe
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5108 - 5111
  • [5] CNN-based Deblurring of Terahertz Images
    Ljubenovic, Marina
    Bazrafkan, Shabab
    De Beenhouwer, Jan
    Sijbers, Jan
    VISAPP: PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 4: VISAPP, 2020, : 323 - 330
  • [6] Assessing operational accuracy of CNN-based image classifiers using an oracle surrogate
    Guerriero, Antonio
    Lyu, Michael R.
    Pietrantuono, Roberto
    Russo, Stefano
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2023, 17
  • [7] CNN-Based Pill Image Recognition for Retrieval Systems
    Al-Hussaeni, Khalil
    Karamitsos, Ioannis
    Adewumi, Ezekiel
    Amawi, Rema M.
    APPLIED SCIENCES-BASEL, 2023, 13 (08):
  • [8] Face Mask Detection Using GoogLeNet CNN-Based SVM Classifiers
    Sunnetci, Kubilay Muhammed
    Akben, Selahaddin Batuhan
    Kara, Mevlude Merve
    Alkan, Ahmet
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2023, 36 (02): : 645 - 658
  • [9] A Method for Improving CNN-Based Image Recognition Using DCGAN
    Fang, Wei
    Zhang, Feihong
    Sheng, Victor S.
    Ding, Yewen
    CMC-COMPUTERS MATERIALS & CONTINUA, 2018, 57 (01): : 167 - 178
  • [10] Adaptive museum lighting using CNN-based image segmentation
    Cerpentier, Jeroen
    Rondelez, Nick
    Slembrouck, Nathan
    Gielen, Stef
    Acuna, Paula
    Meuret, Youri
    BUILDING AND ENVIRONMENT, 2023, 242