Highly accurate quadrature schemes for singular integrals in energetic BEM applied to elastodynamics

被引:11
作者
Aimi, Alessandra [1 ]
Di Credico, Giulia [1 ]
Diligenti, Mauro [1 ]
Guardasoni, Chiara [1 ]
机构
[1] Univ Parma, Dept Math Phys & Comp Sci, Parco Area Sci 53-A, I-43124 Parma, Italy
关键词
Elastodynamics; Energetic BEM; Weakly singular kernel; Heaviside function; Numerical integration; NUMERICAL-INTEGRATION; EQUATION METHOD; ELEMENT-METHOD; GALERKIN BEM; BOUNDARY; FORMULATION;
D O I
10.1016/j.cam.2022.114186
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an exterior linear elastodynamics problem with vanishing initial conditions and Dirichlet datum on the scatterer. We convert the Navier Equation, governing the wave behaviour, into two space-time Boundary Integral Equations (BIEs) whose solution is approximated by the energetic Boundary Element Method (BEM). To apply this technique, we have to set the BIEs in a weak form related to the energy of the differential problem solution at the final time instant of analysis. After the space-time discretization of the weak formulation, we have to deal with double space-time integrals, with a weakly singular kernel depending on primary and secondary wave speeds and multiplied by Heaviside functions. The main purpose of this work is the analysis of these peculiar integrals and the study of suitable quadrature schemes for their approximation. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:27
相关论文
共 34 条
  • [1] MULTI-DOMAIN BEM FOR TWO-DIMENSIONAL PROBLEMS OF ELASTODYNAMICS
    AHMAD, S
    BANERJEE, PK
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1988, 26 (04) : 891 - 911
  • [2] Aimi A, 1997, INT J NUMER METH ENG, V40, P1977, DOI 10.1002/(SICI)1097-0207(19970615)40:11<1977::AID-NME150>3.0.CO
  • [3] 2-O
  • [4] Aimi A, 2011, RIV MAT UNIV PARMA, V2, P147
  • [5] An energy approach to space-time Galerkin BEM for wave propagation problems
    Aimi, A.
    Diligenti, M.
    Guardasoni, C.
    Mazzieri, I.
    Panizzi, S.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 80 (09) : 1196 - 1240
  • [6] Aimi A., 2019, COMMUN APPL IND MATH, V10, P182, DOI [10.1515/caim-2019-0020, DOI 10.1515/CAIM-2019-0020]
  • [7] Andersen L., 2006, Linear Elastodynamic Analysis
  • [8] Antes H, 1985, Finite Elem Anal Des, V1, P313
  • [9] Bamberger A., 1986, MATH METHOD APPL SCI, V8, P405, DOI DOI 10.1002/MMA.1670080127
  • [10] Bamberger A., 1986, MATH METHOD APPL SCI, V8, P598