A new wearable multichannel magnetocardiogram system with a SERF atomic magnetometer array

被引:83
作者
Yang, Yanfei [2 ]
Xu, Mingzhu [2 ]
Liang, Aimin [3 ]
Yin, Yan [2 ]
Ma, Xin [1 ,4 ]
Gao, Yang [5 ,6 ]
Ning, Xiaolin [1 ,4 ]
机构
[1] Beihang Univ, Hangzhou Innovat Inst, Hangzhou 310051, Peoples R China
[2] Beihang Univ, Sch Instrumentat Sci & Optoelect Engn, Beijing 100191, Peoples R China
[3] Capital Med Univ, Beijing Childrens Hosp, Natl Ctr Childrens Hlth, Dept Child Hlth Care Ctr, Beijing 100045, Peoples R China
[4] Beihang Univ, Res Inst Frontier Sci, Beijing 100191, Peoples R China
[5] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[6] Beihang Univ, Sch Phys, Beijing 100191, Peoples R China
关键词
ROOM-TEMPERATURE; FIELD; MCG; SENSITIVITY;
D O I
10.1038/s41598-021-84971-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, a wearable multichannel human magnetocardiogram (MCG) system based on a spin exchange relaxation-free regime (SERF) magnetometer array is developed. The MCG system consists of a magnetically shielded device, a wearable SERF magnetometer array, and a computer for data acquisition and processing. Multichannel MCG signals from a healthy human are successfully recorded simultaneously. Independent component analysis (ICA) and empirical mode decomposition (EMD) are used to denoise MCG data. MCG imaging is realized to visualize the magnetic and current distribution around the heart. The validity of the MCG signals detected by the system is verified by electrocardiogram (ECG) signals obtained at the same position, and similar features and intervals of cardiac signal waveform appear on both MCG and ECG. Experiments show that our wearable MCG system is reliable for detecting MCG signals and can provide cardiac electromagnetic activity imaging.
引用
收藏
页数:11
相关论文
共 31 条
[1]   Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers [J].
Alem, Orang ;
Sander, Tilmann H. ;
Mhaskar, Rahul ;
LeBlanc, John ;
Eswaran, Hari ;
Steinhoff, Uwe ;
Okada, Yoshio ;
Kitching, John ;
Trahms, Lutz ;
Knappe, Svenja .
PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (12) :4797-4811
[2]   High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation [J].
Allred, JC ;
Lyman, RN ;
Kornack, TW ;
Romalis, MV .
PHYSICAL REVIEW LETTERS, 2002, 89 (13) :130801-130801
[3]   Dynamical mapping of the human cardiomagnetic field with a room-temperature, laser-optical sensor [J].
Bison, G ;
Wynands, R ;
Weis, A .
OPTICS EXPRESS, 2003, 11 (08) :904-909
[4]   A laser-pumped magnetometer for the mapping of human cardiomagnetic fields [J].
Bison, G ;
Wynands, R ;
Weis, A .
APPLIED PHYSICS B-LASERS AND OPTICS, 2003, 76 (03) :325-328
[5]   A room temperature 19-channel magnetic field mapping device for cardiac signals [J].
Bison, G. ;
Castagna, N. ;
Hofer, A. ;
Knowles, P. ;
Schenker, J. -L. ;
Kasprzak, M. ;
Saudan, H. ;
Weis, A. .
APPLIED PHYSICS LETTERS, 2009, 95 (17)
[6]  
Bison G., 2004, DEV OPTICAL CARDIO M
[7]   MAGNETIC-FIELD PRODUCED BY A CURRENT DIPOLE [J].
COHEN, D ;
HOSAKA, H .
JOURNAL OF ELECTROCARDIOLOGY, 1976, 9 (04) :409-417
[8]   Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer [J].
Dang, H. B. ;
Maloof, A. C. ;
Romalis, M. V. .
APPLIED PHYSICS LETTERS, 2010, 97 (15)
[9]   Clinical application of magnetocardiography [J].
Fenici, R ;
Brisinda, D ;
Meloni, AM .
EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2005, 5 (03) :291-313
[10]  
Haberkorn Wolfgang, 2006, Biomagn Res Technol, V4, P5, DOI 10.1186/1477-044X-4-5