Design framework for metasurface optics-based convolutional neural networks

被引:25
作者
Burgos, Carlos Mauricio Villegas [1 ]
Yang, Tianqi [2 ]
Zhu, Yuhao [2 ]
Vamivakas, A. Nickolas [1 ]
机构
[1] Univ Rochester, Inst Opt, 275 Hutchison Rd, Rochester, NY 14627 USA
[2] Univ Rochester, Dept Comp Sci, 2513 Wegmans Hall, Rochester, NY 14627 USA
关键词
INVERSE DESIGN;
D O I
10.1364/AO.421844
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Deep learning using convolutional neural networks (CNNs) has been shown to significantly outperform many conventional vision algorithms. Despite efforts to increase the CNN efficiency both algorithmically and with specialized hardware, deep learning remains difficult to deploy in resource-constrained environments. In this paper, we propose an end-to-end framework to explore how to optically compute the CNNs in free-space, much like a computational camera. Compared to existing free-space optics-based approaches that are limited to processing single-channel (i.e., gray scale) inputs, we propose the first general approach, based on nanoscale metasurface optics, that can process RGB input data. Our system achieves up to an order of magnitude energy savings and simplifies the sensor design, all the while sacrificing little network accuracy. (C) 2021 Optical Society of America
引用
收藏
页码:4356 / 4365
页数:10
相关论文
共 58 条
[1]  
[Anonymous], SYSTOLIC ARRAY DATA
[2]  
[Anonymous], 2018, On-Chip Optical Convolutional Neural Networks
[3]   Fully-Convolutional Siamese Networks for Object Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Henriques, Joao F. ;
Vedaldi, Andrea ;
Torr, Philip H. S. .
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 :850-865
[4]   Silicon microring resonators [J].
Bogaerts, Wim ;
De Heyn, Peter ;
Van Vaerenbergh, Thomas ;
De Vos, Katrien ;
Selvaraja, Shankar Kumar ;
Claes, Tom ;
Dumon, Pieter ;
Bienstman, Peter ;
Van Thourhout, Dries ;
Baets, Roel .
LASER & PHOTONICS REVIEWS, 2012, 6 (01) :47-73
[5]   Reinforcement learning in a large-scale photonic recurrent neural network [J].
Bueno, J. ;
Maktoobi, S. ;
Froehly, L. ;
Fischer, I. ;
Jacquot, M. ;
Larger, L. ;
Brunner, D. .
OPTICA, 2018, 5 (06) :756-760
[6]   Challenges in the Path Toward a Scalable Silicon Photonics Implementation of Deep Neural Networks [J].
Burgos, Carlos Mauricio Villegas ;
Vamivakas, Nickolas .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2019, 55 (05)
[7]   Deep Optics for Monocular Depth Estimation and 3D Object Detection [J].
Chang, Julie ;
Wetzstein, Gordon .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :10192-10201
[8]   Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification [J].
Chang, Julie ;
Sitzmann, Vincent ;
Dun, Xiong ;
Heidrich, Wolfgang ;
Wetzstein, Gordon .
SCIENTIFIC REPORTS, 2018, 8
[9]   The rise of deep learning in drug discovery [J].
Chen, Hongming ;
Engkvist, Ola ;
Wang, Yinhai ;
Olivecrona, Marcus ;
Blaschke, Thomas .
DRUG DISCOVERY TODAY, 2018, 23 (06) :1241-1250
[10]   A broadband achromatic metalens for focusing and imaging in the visible [J].
Chen, Wei Ting ;
Zhu, Alexander Y. ;
Sanjeev, Vyshakh ;
Khorasaninejad, Mohammadreza ;
Shi, Zhujun ;
Lee, Eric ;
Capasso, Federico .
NATURE NANOTECHNOLOGY, 2018, 13 (03) :220-+