Stability of exponentially harmonic maps

被引:1
|
作者
Chiang, Yuan-Jen [1 ]
机构
[1] Univ Mary Washington Fredericksburg, Dept Math, Fredericksburg, VA 22401 USA
关键词
Exponentially harmonic map; exponential tension field; stability; NONEXISTENCE;
D O I
10.1142/S1793525320500193
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any stable exponentially harmonic map from a compact Riemannian manifold into a compact simply-connected delta-pinched Riemannian manifold under certain circumstance is constant in two different versions. We also prove that a non-constant exponentially harmonic map from a compact hypersurface into a compact Riemannian manifold satisfying certain condition is unstable.
引用
收藏
页码:499 / 513
页数:15
相关论文
共 50 条
  • [41] On the Stability of Discrete Chaotic Maps
    Feng, Ming-Ku
    Liu, Jing-Lin
    2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 : 1023 - 1027
  • [42] Generalized stability preserving maps
    Djaferis, TE
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 4972 - 4977
  • [43] On the numerical stability of the exponentially fitted methods for first order IVPs
    Montijano, J., I
    Randez, L.
    Van Daele, M.
    Calvo, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 379
  • [44] Some Remarks on Bi-f-Harmonic Maps and f-Biharmonic Maps
    Luo, Yong
    Ou, Ye-Lin
    RESULTS IN MATHEMATICS, 2019, 74 (03)
  • [45] Stability of harmonic morphisms to a surface
    Montaldo, S
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1998, 9 (07) : 865 - 875
  • [46] Gauss maps of harmonic and minimal great circle fibrations
    Fourtzis, Ioannis
    Markellos, Michael
    Savas-Halilaj, Andreas
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2023, 63 (02)
  • [47] Hermitian harmonic maps and non-degenerate curvatures
    Liu, Kefeng
    Yang, Xiaokui
    MATHEMATICAL RESEARCH LETTERS, 2014, 21 (04) : 831 - 862
  • [48] Harmonic maps on locally conformal almost cosymplectic manifolds
    Gherghe, Catalin
    Vilcu, Gabriel-Eduard
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2024, 26 (09)
  • [49] Global stability of fuzzy cognitive maps
    Harmati, Istvan A.
    Hatwagner, Miklos F.
    Koczy, Laszlo T.
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (10) : 7283 - 7295
  • [50] Global stability of fuzzy cognitive maps
    István Á. Harmati
    Miklós F. Hatwágner
    László T. Kóczy
    Neural Computing and Applications, 2023, 35 : 7283 - 7295