Control for the sine-Gordon equation

被引:6
作者
Petcu, M [1 ]
Temam, R
机构
[1] Univ Paris 11, Anal Numer Lab, Orsay, France
[2] Romanian Acad, Inst Math, Bucharest, Romania
[3] Indiana Univ, Inst Appl Math & Sci Comp, Bloomington, IN 47405 USA
关键词
robust control; sine-Gordon equation; energy estimates; saddle point;
D O I
10.1051/cocv:2004020
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article we apply the optimal and the robust control theory to the sine-Gordon equation. In our case the control is given by the boundary conditions and we work in a finite time horizon. We present at the beginning the optimal control problem and we derive a necessary condition of optimality and we continue by formulating a robust control problem for which existence and uniqueness of solutions are derived.
引用
收藏
页码:553 / 573
页数:21
相关论文
共 15 条
[1]  
Abergel F., 1990, THEOR COMP FLUID DYN, V1, P303, DOI [DOI 10.1007/BF00271794, 10.1007/bf00271794]
[2]  
Agrawal G., 2006, NONLINEAR FIBER OPTI
[3]   A general framework for robust control in fluid mechanics [J].
Bewley, TR ;
Teman, R ;
Ziane, M .
PHYSICA D, 2000, 138 (3-4) :360-392
[4]  
Boyd R. W., 2003, NONLINEAR OPTICS
[5]  
EKELAND I, 1999, CLASSICS APPL MATH, V28
[6]  
Green M., 2012, Linear Robust Control
[7]   Adjoint equation-based methods for control problems in incompressible, viscous flows [J].
Gunzburger, M .
FLOW TURBULENCE AND COMBUSTION, 2000, 65 (3-4) :249-272
[8]   Optimal control of stationary, low Mach number, highly nonisothermal, viscous flows [J].
Gunzburger, MD ;
Imanuvilov, OY .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2000, 5 :477-500
[9]  
Hu CB, 2001, DYNAM CONT DIS SER B, V8, P315
[10]  
LIONS JL, 2003, SELECTED WORK