A study of vibration reduction structural system of long-span cable-stayed bridges

被引:0
|
作者
Xu, XL [1 ]
Liu, WQ [1 ]
Wang, RG [1 ]
Wang, ZF [1 ]
Wu, WS [1 ]
Wu, XL [1 ]
机构
[1] Nanjing Univ Technol, Nanjing, Peoples R China
来源
PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON EARTHQUAKE ENGINEERING: NEW FRONTIER AND RESEARCH TRANSFORMATION | 2004年
关键词
cable-stayed bridge; energy dissipation; vibration reduction; viscous damper;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The damped energy - dissipated technique of bridges is to increase the damping of structures, to absorb the vibration energy due to earthquake and other external factors, and then to reduce the response of structures by installing energy dissipation devices in bridges. In this paper, viscous dampers are introduced because of their superior energy consuming capacity without increasing the stiffness of structures. A scheme is proposed that vibration reduction design is carried out both longitudinally and transversally, and issues are discussed on how to combine the general structural system with the structural system of vibration reduction in order to satisfy needs of normal use as well as seismic fortification for long-span cable-stayed bridges. Using the example of the North Channel Bridge on HangZhou Bay, design principles and effects of the structural system of vibration reduction for long-span cable-stayed bridges are verified.
引用
收藏
页码:529 / 534
页数:6
相关论文
共 50 条
  • [1] THE INFLUENCE OF BROKEN CABLES ON THE STRUCTURAL BEHAVIOR OF LONG-SPAN CABLE-STAYED BRIDGES
    Kao, Chin-Sheng
    Kou, Chang-Huan
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN, 2010, 18 (03): : 395 - 404
  • [2] A substructure method for structural model updating of long-span cable-stayed bridges
    Zhou, Lin-Ren
    Ou, Jin-Ping
    Zhendong yu Chongji/Journal of Vibration and Shock, 2014, 33 (19): : 52 - 58
  • [3] CORROSION EFFECT ON CABLE STATE OF LONG-SPAN CABLE-STAYED BRIDGES
    Huang, Juan
    Tang, Li-Qun
    4TH INTERNATIONAL SYMPOSIUM ON LIFETIME ENGINEERING OF CIVIL INFRASTRUCTURE, 2009, : 366 - 371
  • [4] Cracking of Longitudinal Diaphragms in Long-Span Cable-Stayed Bridges
    Guo, Tong
    Liu, Zhongxiang
    Pan, Shenjun
    Pan, Zhihong
    JOURNAL OF BRIDGE ENGINEERING, 2015, 20 (11)
  • [5] Seismic reliability analysis of long-span cable-stayed bridges
    School of Highway, Chang’an University, Xi’an, Shaanxi, China
    Open Civ. Eng. J., 1 (592-597): : 592 - 597
  • [6] Integrated finite strip analysis for long-span cable-stayed bridges
    Naderian, Hamidreza
    Cheung, Moe M. S.
    Shen, Zhenyuan
    Dragomirescu, Elena
    COMPUTERS & STRUCTURES, 2015, 158 : 82 - 97
  • [7] Seismic Displacements Reduction for a Long-Span Cable-Stayed Bridge
    Yang, Xi-wen
    Lian, Zi-bao
    ADVANCES IN CIVIL ENGINEERING, PTS 1-6, 2011, 255-260 : 840 - +
  • [8] Multivariate statistical sensitivity analysis of the completed structural state for Long-span Cable-Stayed bridges
    Mei, Dapeng
    Shan, Deshan
    Luo, Lingfeng
    Gu, Xiaoyu
    STRUCTURES, 2022, 41 : 51 - 65
  • [9] Longitudinal Vibration Control of Long-span Railway Cable-Stayed Bridge
    Shan, Deshan
    He, Yuan
    Li, Qiao
    ADVANCES IN CIVIL ENGINEERING, PTS 1-6, 2011, 255-260 : 1795 - 1799
  • [10] Safety assessment method of inclined cables for long-span cable-stayed bridges
    Huang, Juan
    Wang, Ronghui
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON HEALTH MONITORING OF STRUCTURE, MATERIALS AND ENVIRONMENT, VOLS 1 AND 2, 2007, : 253 - 257