On Chebyshev-Halley methods with sixth-order convergence for solving non-linear equations

被引:15
作者
Kou, Jisheng [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Chebyshev-Halley methods; Newton's method; non-linear equations; iterative method; root-finding;
D O I
10.1016/j.amc.2007.01.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a family of new variants of Chebyshev-Halley methods. The new methods have sixth-order convergence although they only add one evaluation of the function at the point iterated by Chebyshev-Halley methods. The numerical results presented show that the new methods work better not only in order but in efficiency. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:126 / 131
页数:6
相关论文
共 10 条
[1]   Geometric constructions of iterative functions to solve nonlinear equations [J].
Amat, S ;
Busquier, S ;
Gutiérrez, JM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 157 (01) :197-205
[2]   A NOTE ON THE HALLEY METHOD IN BANACH-SPACES [J].
CHEN, D ;
ARGYROS, IK ;
QIAN, QS .
APPLIED MATHEMATICS AND COMPUTATION, 1993, 58 (2-3) :215-224
[3]  
CHEN D, 1994, APP MATH LETT, V7
[4]   An improvement of the Euler-Chebyshev iterative method [J].
Grau, M ;
Díaz-Barrero, JL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 315 (01) :1-7
[5]   A family of Chebyshev-Halley type methods in Banach spaces [J].
Gutierrez, JM ;
Hernandez, MA .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1997, 55 (01) :113-130
[6]   An acceleration of Newton's method:: Super-Halley method [J].
Gutiérrez, JM ;
Hernández, MA .
APPLIED MATHEMATICS AND COMPUTATION, 2001, 117 (2-3) :223-239
[7]  
JISHENG K, 2006, APPL MATH COMPUT
[8]  
Ostrowski AM., 1960, SOLUTION EQUATION SY
[9]  
Traub J. F., 1982, ITERATIVE METHODS SO
[10]   A variant of Newton's method with accelerated third-order convergence [J].
Weerakoon, S ;
Fernando, TGI .
APPLIED MATHEMATICS LETTERS, 2000, 13 (08) :87-93