Persistence distributions for non-Gaussian Markovian processes

被引:20
|
作者
Farago, J [1 ]
机构
[1] Ecole Normale Super Lyon, Phys Lab, UMR CNRS 5672, F-69364 Lyon 07, France
来源
EUROPHYSICS LETTERS | 2000年 / 52卷 / 04期
关键词
D O I
10.1209/epl/i2000-00449-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a systematic method to derive the asymptotic behaviour of the persistence distribution, for a large class of stochastic processes described by a general Fokker-Planck equation in one dimension. Theoretical predictions are compared to simple solvable systems and to numerical calculations. The very good agreement attests the validity of this approach.
引用
收藏
页码:379 / 385
页数:7
相关论文
共 50 条
  • [1] A NON-GAUSSIAN MARKOVIAN MODEL TO SIMULATE HYDROLOGIC PROCESSES
    VALADARESTAVARES, L
    JOURNAL OF HYDROLOGY, 1980, 46 (3-4) : 281 - 287
  • [2] Persistence exponents of non-Gaussian processes in statistical mechanics
    Deloubrière, O
    Hilhorst, HJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (10): : 1993 - 2013
  • [3] Non-Gaussian distributions
    Mastrangelo, M
    Mastrangelo, V
    Teuler, JM
    APPLIED MATHEMATICS AND COMPUTATION, 1999, 101 (2-3) : 99 - 124
  • [4] Non-gaussian distributions
    Mastrangelo, M
    Mastrangelo, V
    Teuler, JM
    APPLIED MATHEMATICS AND COMPUTATION, 2000, 109 (2-3) : 225 - 247
  • [5] Universal width distributions in non-Markovian Gaussian processes
    Santachiara, Raoul
    Rosso, Alberto
    Krauth, Werner
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
  • [6] Persistence of non-Markovian Gaussian stationary processes in discrete time
    Nyberg, Markus
    Lizana, Ludvig
    PHYSICAL REVIEW E, 2018, 97 (04)
  • [7] Probability distributions of peaks and troughs of non-Gaussian random processes
    Ochi, MK
    PROBABILISTIC ENGINEERING MECHANICS, 1998, 13 (04) : 291 - 298
  • [8] LQ Non-Gaussian Regulator With Markovian Control
    Battilotti, Stefano
    Cacace, Filippo
    d'Angelo, Massimiliano
    Germani, Alfredo
    Sinopoli, Bruno
    IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (03): : 679 - 684
  • [9] DIFFERENTIAL PROBABILITY DISTRIBUTIONS FOR A CERTAIN CLASS OF NON-GAUSSIAN PROCESSES.
    Golyanitskiy, I.A.
    1600, (10):
  • [10] Exit times for some autoregressive processes with non-Gaussian noise distributions
    Hognas, Goran
    Jung, Brita
    PROBABILITY ON ALGEBRAIC AND GEOMETRIC STRUCTURES, 2016, 668 : 111 - 117