Bessel-like birth-death process

被引:3
作者
Gontis, V [1 ]
Kononovicius, A. [1 ]
机构
[1] Vilnius Univ, Inst Theoret Phys & Astron, Sauletekio Al 3, LT-10257 Vilnius, Lithuania
关键词
Bessel process; Birth-death processes; Markov chains; Spurious memory; Bursting behavior; MEMORY; MODEL;
D O I
10.1016/j.physa.2019.123119
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider models of the population or opinion dynamics which result in the nonlinear stochastic differential equations (SDEs) exhibiting the spurious long-range memory. In this context, the correspondence between the description of the birth-death processes as the continuous-time Markov chains and the continuous SDEs is of high importance for the alternatives of modeling. We propose and generalize the Bessel-like birth-death process having clear representation by the SDEs. The new process helps to integrate the alternatives of description and to derive the equations for the probability density function (PDF) of the burst and inter-burst duration of the proposed continuous time birth-death processes. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Birth-death processes with temporary birth and/or death halts
    Shiny, K. S.
    Viswanath, Narayanan C.
    OPSEARCH, 2024,
  • [2] Extinction times for a birth-death process with two phases
    Ross, J. V.
    Pollett, P. K.
    MATHEMATICAL BIOSCIENCES, 2006, 202 (02) : 310 - 322
  • [3] On a bilateral birth-death process with alternating rates
    Antonio Di Crescenzo
    Antonella Iuliano
    Barbara Martinucci
    Ricerche di Matematica, 2012, 61 (1) : 157 - 169
  • [4] On a bilateral birth-death process with alternating rates
    Di Crescenzo, Antonio
    Iuliano, Antonella
    Martinucci, Barbara
    RICERCHE DI MATEMATICA, 2012, 61 (01) : 157 - 169
  • [5] Spatial birth-death swap chains
    Huber, Mark
    BERNOULLI, 2012, 18 (03) : 1031 - 1041
  • [6] Generalized Hypergeometric Distributions Generated by Birth-Death Process in Bioinformatics
    Kuznetsov, Vladimir A.
    Grageda, Andre
    Farbod, Davood
    MARKOV PROCESSES AND RELATED FIELDS, 2022, 28 (02) : 303 - 327
  • [7] On a Symmetric, Nonlinear Birth-Death Process with Bimodal Transition Probabilities
    Di Crescenzo, Antonio
    Martinucci, Barbara
    SYMMETRY-BASEL, 2009, 1 (02): : 201 - 214
  • [8] First-passage and first-exit times of a Bessel-like stochastic process
    Martin, Edgar
    Behn, Ulrich
    Germano, Guido
    PHYSICAL REVIEW E, 2011, 83 (05):
  • [9] Ricci Curvature on Birth-Death Processes
    Hua, Bobo
    Muench, Florentin
    AXIOMS, 2023, 12 (05)
  • [10] Bessel-like functional distributions in brain average evoked potentials
    Capolupo, Antonio
    Kozma, Robert
    del Campo, Andres Olivares
    Vitiello, Giuseppe
    JOURNAL OF INTEGRATIVE NEUROSCIENCE, 2017, 16 : S85 - S98