Adaptive Fuzzy Variable Structure Control of Fractional-Order Nonlinear Systems with Input Nonlinearities

被引:11
|
作者
Ha, Shumin [1 ]
Chen, Liangyun [1 ]
Liu, Heng [2 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Guangxi Univ Nationalities, Coll Math & Phys, Nanning 530006, Peoples R China
基金
中国国家自然科学基金;
关键词
Riemann-Liouville fractional-order nonlinear system; Caputo fractional-order nonlinear system; Adaptive fuzzy control; Dead-zone; Input nonlinearity; TRACKING CONTROL; CHAOTIC SYSTEMS; MODEL; SYNCHRONIZATION; STABILITY; OBSERVER;
D O I
10.1007/s40815-021-01105-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The unknown dead-zone input nonlinearities (DZINs) are considered in the Riemann-Liouville fractional-order nonlinear systems (FONSs) and the Caputo FONSs in this paper. The unknown DZINs in the FONSs will cause FONSs instability. In this paper, by using the fractional-order Lyapunov stability theory, a variable structure adaptive fuzzy control (AFC) scheme is designed to solve the unknown DZINs in the FONSs. The unknown terms of the FONSs and the uncertain terms of DZINs are handled by fuzzy logic systems (FLSs). The parameters boundedness of FLSs is guaranteed via the constructed fractional-order adaptive laws (FOALs). By using FLSs, this paper does not need to know the exact values of gain reduction tolerances (GRTs) in the unknown DZINs, which makes the constructed scheme more suitable for the actual system. The scheme proposed in this paper can be used to effectively control the Riemann-Liouville FONSs and the Caputo FONSs with/without unknown DZINs. Finally, three simulation results verify the AFCs we designed are effective for both Riemann-Liouville FONSs and Caputo FONSs with unknown DZINs.
引用
收藏
页码:2309 / 2323
页数:15
相关论文
共 50 条
  • [11] Adaptive fuzzy control for a class of nonlinear fractional-order systems
    Sun, Yeguo
    Li, Ling
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 3477 - 3482
  • [12] An Adaptive Control of Fractional-Order Nonlinear Uncertain Systems with Input Saturation
    Wang, Changhui
    Liang, Mei
    Chai, Yongsheng
    COMPLEXITY, 2019, 2019
  • [13] Adaptive type-2 fuzzy backstepping control of uncertain fractional-order nonlinear systems with unknown dead-zone
    Jafari, Adeleh Arabzadeh
    Mohammadi, Seyed Mohammad Ali
    Naseriyeh, Mohsen Hasanpour
    APPLIED MATHEMATICAL MODELLING, 2019, 69 : 506 - 532
  • [14] Adaptive Fuzzy Backstepping Dynamic Surface Control of Strict-Feedback Fractional-Order Uncertain Nonlinear Systems
    Ma, Zhiyao
    Ma, Hongjun
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (01) : 122 - 133
  • [15] Embedded adaptive fractional-order sliding mode control based on TSK fuzzy system for nonlinear fractional-order systems
    Mostafa, Esraa
    Elshazly, Osama
    El-Bardini, Mohammad
    El-Nagar, Ahmad M. M.
    SOFT COMPUTING, 2023, 27 (21) : 15463 - 15477
  • [16] Adaptive fuzzy command filtered control for incommensurate fractional-order MIMO nonlinear systems with input saturation
    Senkui Lu
    Xiang Li
    Ke Lu
    Zhengzhong Wang
    Yujie Ma
    Neural Computing and Applications, 2023, 35 : 8157 - 8170
  • [17] Fuzzy Adaptive Command-Filter Control of Incommensurate Fractional-Order Nonlinear Systems
    Gong, Dianjun
    Wang, Yong
    ENTROPY, 2023, 25 (06)
  • [18] Adaptive hybrid fuzzy output feedback control for fractional-order nonlinear systems with time-varying delays and input saturation
    Song, Shuai
    Park, Ju H.
    Zhang, Baoyong
    Song, Xiaona
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 364
  • [19] A Fuzzy Control Strategy to Synchronize Fractional-Order Nonlinear Systems Including Input Saturation
    Berardehi, Zahra Rasooli
    Zhang, Chongqi
    Taheri, Mostafa
    Roohi, Majid
    Khooban, Mohammad Hassan
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2023, 2023
  • [20] Adaptive control of nonlinear fractional-order systems using T-S fuzzy method
    Mirzajani, Saeed
    Aghababa, Mohammad Pourmahmood
    Heydari, Aghileh
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2019, 10 (03) : 527 - 540