Adaptive Fuzzy Variable Structure Control of Fractional-Order Nonlinear Systems with Input Nonlinearities

被引:11
|
作者
Ha, Shumin [1 ]
Chen, Liangyun [1 ]
Liu, Heng [2 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Guangxi Univ Nationalities, Coll Math & Phys, Nanning 530006, Peoples R China
基金
中国国家自然科学基金;
关键词
Riemann-Liouville fractional-order nonlinear system; Caputo fractional-order nonlinear system; Adaptive fuzzy control; Dead-zone; Input nonlinearity; TRACKING CONTROL; CHAOTIC SYSTEMS; MODEL; SYNCHRONIZATION; STABILITY; OBSERVER;
D O I
10.1007/s40815-021-01105-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The unknown dead-zone input nonlinearities (DZINs) are considered in the Riemann-Liouville fractional-order nonlinear systems (FONSs) and the Caputo FONSs in this paper. The unknown DZINs in the FONSs will cause FONSs instability. In this paper, by using the fractional-order Lyapunov stability theory, a variable structure adaptive fuzzy control (AFC) scheme is designed to solve the unknown DZINs in the FONSs. The unknown terms of the FONSs and the uncertain terms of DZINs are handled by fuzzy logic systems (FLSs). The parameters boundedness of FLSs is guaranteed via the constructed fractional-order adaptive laws (FOALs). By using FLSs, this paper does not need to know the exact values of gain reduction tolerances (GRTs) in the unknown DZINs, which makes the constructed scheme more suitable for the actual system. The scheme proposed in this paper can be used to effectively control the Riemann-Liouville FONSs and the Caputo FONSs with/without unknown DZINs. Finally, three simulation results verify the AFCs we designed are effective for both Riemann-Liouville FONSs and Caputo FONSs with unknown DZINs.
引用
收藏
页码:2309 / 2323
页数:15
相关论文
共 50 条
  • [1] Adaptive Fuzzy Variable Structure Control of Fractional-Order Nonlinear Systems with Input Nonlinearities
    Shumin Ha
    Liangyun Chen
    Heng Liu
    International Journal of Fuzzy Systems, 2021, 23 : 2309 - 2323
  • [2] Adaptive Fuzzy Backstepping Control of Fractional-Order Nonlinear Systems
    Liu, Heng
    Pan, Yongping
    Li, Shenggang
    Chen, Ye
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (08): : 2209 - 2217
  • [3] Adaptive fuzzy backstepping control of fractional-order chaotic systems with input saturation
    Ha, Shumin
    Liu, Heng
    Li, Shenggang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (05) : 6513 - 6525
  • [4] Adaptive fuzzy control for a class of unknown fractional-order neural networks subject to input nonlinearities and dead-zones
    Liu, Heng
    Li, Shenggang
    Wang, Hongxing
    Sun, Yeguo
    INFORMATION SCIENCES, 2018, 454 : 30 - 45
  • [5] Robust adaptive backstepping control of uncertain fractional-order nonlinear systems with input time delay
    Zirkohi, Majid Moradi
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 196 : 251 - 272
  • [6] Command Filtered Adaptive Fuzzy Control of Fractional-Order Nonlinear Systems With Unknown Dead Zones
    Ha, Shumin
    Chen, Liangyun
    Liu, Dong
    Liu, Heng
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, 54 (06): : 3705 - 3716
  • [7] Compound Adaptive Fuzzy Output Feedback Control for Uncertain Fractional-Order Nonlinear Systems with Fuzzy Dead-Zone Input
    Shi, Jiangteng
    Cao, Jinde
    Liu, Heng
    Zhang, Xiulan
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2023, 25 (06) : 2439 - 2452
  • [8] Switching adaptive controllers to control fractional-order complex systems with unknown structure and input nonlinearities
    Roohi, Majid
    Aghababa, Mohammad Pourmahmood
    Haghighi, Ahmad Reza
    COMPLEXITY, 2015, 21 (02) : 211 - 223
  • [9] Adaptive fuzzy command filtered control for incommensurate fractional-order MIMO nonlinear systems with input saturation
    Lu, Senkui
    Li, Xiang
    Lu, Ke
    Wang, Zhengzhong
    Ma, Yujie
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (11) : 8157 - 8170
  • [10] Command filtered adaptive fuzzy control of fractional-order nonlinear systems
    Ha, Shumin
    Chen, Liangyun
    Liu, Heng
    Zhang, Shaoyu
    EUROPEAN JOURNAL OF CONTROL, 2022, 63 : 48 - 60