Retail Traffic-Flow Analysis Using a Fast Multi-object Detection and Tracking System

被引:0
作者
Cobos, Richard [1 ]
Hernandez, Jefferson [1 ]
Abad, Andres G. [1 ]
机构
[1] Escuela Super Politecn Litoral ESPOL, Ind Artificial Intelligence INARI Res Lab, Campus Gustavo Galindo Velasco 09-01-5863, Guayaquil, Ecuador
来源
APPLICATIONS OF COMPUTATIONAL INTELLIGENCE, COLCACI 2019 | 2019年 / 1096卷
关键词
Multi-object tracking; Shopping-carts detection; Indoor localization and tracking; Kalman filters; MULTITARGET;
D O I
10.1007/978-3-030-36211-9_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traffic-flow analysis allows to make critical decisions for retail operation management. Common approaches for traffic-flow analysis make use of hardware-based solutions, which have major drawbacks, such as high deployment and maintenance costs. In this work, we address this issue by proposing a Multiple-Object Tracking (MOT) system, following the tracking-by-detection paradigm, that leverages on an ensemble of detectors, each running every f frames. We further measured the performance of our model in the MOT16 Challenge and applied our algorithm to obtain heatmaps and paths for customers and shopping carts in a retail store from CCTV cameras.
引用
收藏
页码:29 / 39
页数:11
相关论文
共 50 条
  • [1] A fast multi-object tracking system using an object detector ensemble
    Cobos, Richard
    Hernandez, Jefferson
    Abad, Andres G.
    2019 IEEE COLOMBIAN CONFERENCE ON APPLICATIONS IN COMPUTATIONAL INTELLIGENCE (COLCACI), 2019,
  • [2] Research progress of detection and multi-object tracking algorithm in intelligent traffic monitoring system
    Jin S.-S.
    Long W.
    Hu L.-X.
    Wang T.-Y.
    Pan H.
    Jiang L.-H.
    Kongzhi yu Juece/Control and Decision, 2023, 38 (04): : 890 - 901
  • [3] Multi-object tracking in traffic environments: A systematic literature review
    Jimenez-Bravo, Diego M.
    Lozano Murciego, Alvaro
    Sales Mendes, Andre
    Sanchez San Blas, Hector
    Bajo, Javier
    NEUROCOMPUTING, 2022, 494 : 43 - 55
  • [4] Multi-object Visual Tracking for Indoor Images of Retail Consumers
    Panagos, Iason-Ioannis
    Giotis, Angelos P.
    Nikou, Christophoros
    2022 IEEE 14TH IMAGE, VIDEO, AND MULTIDIMENSIONAL SIGNAL PROCESSING WORKSHOP (IVMSP), 2022,
  • [5] MVmed: Fast Multi-Object Tracking in the Compressed Domain
    Bommes, Lukas
    Lin, Xinlin
    Zhou, Junhong
    PROCEEDINGS OF THE 15TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2020), 2020, : 1419 - 1424
  • [6] Online Multi-Object Tracking Using Joint Domain Information in Traffic Scenarios
    Tian, Wei
    Lauer, Martin
    Chen, Long
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (01) : 374 - 384
  • [7] ByteTrack: Multi-object Tracking by Associating Every Detection Box
    Zhang, Yifu
    Sun, Peize
    Jiang, Yi
    Yu, Dongdong
    Weng, Fucheng
    Yuan, Zehuan
    Luo, Ping
    Liu, Wenyu
    Wang, Xinggang
    COMPUTER VISION, ECCV 2022, PT XXII, 2022, 13682 : 1 - 21
  • [8] Multi-object tracking using dominant sets
    Tesfaye, Yonatan T.
    Zemene, Eyasu
    Pelillo, Marcello
    Prati, Andrea
    IET COMPUTER VISION, 2016, 10 (04) : 289 - 298
  • [9] Fast Multi-Object Tracking Using Convolutional Neural Networks with Tracklets Updating
    Zhang, Yuanping
    Tang, Yuanyan
    Fang, Bin
    Shang, Zhaowei
    2017 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2017, : 313 - 317
  • [10] Online Multi-object Tracking Using Single Object Tracker and Markov Clustering
    Zhu, Jiao
    Zhang, Shanshan
    Yang, Jian
    IMAGE AND GRAPHICS, ICIG 2019, PT III, 2019, 11903 : 555 - 567