Currents, torques, and polarization factors in magnetic tunnel junctions

被引:363
作者
Slonczewski, JC [1 ]
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
D O I
10.1103/PhysRevB.71.024411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Bardeen's transfer-Hamiltonian method is applied to magnetic tunnel junctions having a general degree of atomic disorder. The results reveal a close relationship between magnetoconduction and voltage-driven pseudotorque, and also provide a means of predicting the thickness dependence of tunnel-polarization factors. Among the results: (i) The torque generally varies with moment direction as sin theta at constant applied voltage. (ii) Whenever polarization factors are well defined, the voltage-driven torque on each moment is uniquely proportional to the polarization factor of the other magnet. (iii) At finite applied voltage, this relation implies significant voltage-asymmetry in the torque. For one sign of voltage the torque remains substantial even if the magnetoconductance is greatly diminished. (iv) A broadly defined junction model, called ideal middle, allows for atomic disorder within the magnets and F/I interface regions. In this model, the spin-(sigma) dependence of a basis-state weighting factor proportional to the sum over general state index p of (integralintegraldydzPsi(p,sigma))(2) evaluated within the (e.g., vacuum) barrier generalizes the local state density in previous theories of the tunnel-polarization factor. (v) For small applied voltage, tunnel-polarization factors remain legitimate up to first order in the inverse thickness of the ideal middle. An algebraic formula describes the first-order corrections to polarization factors in terms of newly defined lateral autocorrellation scales.
引用
收藏
页数:10
相关论文
共 32 条
[31]   Spin-dependent tunnelling in magnetic tunnel junctions [J].
Tsymbal, EY ;
Mryasov, ON ;
LeClair, PR .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (04) :R109-R142
[32]   THEORY OF THE PERPENDICULAR MAGNETORESISTANCE IN MAGNETIC MULTILAYERS [J].
VALET, T ;
FERT, A .
PHYSICAL REVIEW B, 1993, 48 (10) :7099-7113