Weakly supervised classification in high energy physics

被引:88
作者
Dery, Lucio Mwinmaarong [1 ]
Nachman, Benjamin [2 ]
Rubbo, Francesco [3 ]
Schwartzman, Ariel [3 ]
机构
[1] Stanford Univ, Phys Dept, Stanford, CA 94305 USA
[2] Lawrence Berkeley Natl Lab, Phys Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[3] Stanford Univ, SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
关键词
Jets;
D O I
10.1007/JHEP05(2017)145
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. This paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics - quark versus gluon tagging - we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervised classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.
引用
收藏
页数:11
相关论文
共 39 条
[1]  
Aaboud M, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP11(2016)112
[2]  
Aaboud M, 2016, EUR PHYS J C, V76, DOI [10.1140/epjc/s10052-016-4338-8, 10.1140/epjc/s10052-016-4344-x, 10.1140/epjc/s10052-016-3978-z]
[3]  
Aad G, 2016, EUR PHYS J C, V76, DOI 10.1140/epjc/s10052-016-4126-5
[4]  
Aad G, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP12(2015)055
[5]  
Aad G, 2014, EUR PHYS J C, V74, DOI 10.1140/epjc/s10052-014-3023-z
[6]   A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX [J].
Alioli, Simone ;
Nason, Paolo ;
Oleari, Carlo ;
Re, Emanuele .
JOURNAL OF HIGH ENERGY PHYSICS, 2010, (06)
[7]   The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations [J].
Alwall, J. ;
Frederix, R. ;
Frixione, S. ;
Hirschi, V. ;
Maltoni, F. ;
Mattelaer, O. ;
Shao, H. -S. ;
Stelzer, T. ;
Torrielli, P. ;
Zaro, M. .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (07)
[8]   Multiple instance classification: Review, taxonomy and comparative study [J].
Amores, Jaume .
ARTIFICIAL INTELLIGENCE, 2013, 201 :81-105
[9]  
Andersen J. R., 2015, P 9 LES HOUCH WORKSH
[10]   PARTON FRAGMENTATION AND STRING DYNAMICS [J].
ANDERSSON, B ;
GUSTAFSON, G ;
INGELMAN, G ;
SJOSTRAND, T .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1983, 97 (2-3) :31-145