How well do global ocean biogeochemistry models simulate dissolved iron distributions?

被引:243
作者
Tagliabue, Alessandro [1 ]
Aumont, Olivier [2 ]
DeAth, Ros [3 ]
Dunne, John P. [4 ]
Dutkiewicz, Stephanie [5 ]
Galbraith, Eric [6 ,7 ,8 ]
Misumi, Kazuhiro [9 ]
Moore, J. Keith [10 ]
Ridgwell, Andy [3 ,11 ]
Sherman, Elliot [10 ]
Stock, Charles [4 ]
Vichi, Marcello [12 ,13 ]
Voelker, Christoph [14 ]
Yool, Andrew [15 ]
机构
[1] Univ Liverpool, Sch Environm Sci, Liverpool L69 3BX, Merseyside, England
[2] Inst Pierre Simon LaPlace, IRD LOCEAN, Paris, France
[3] Univ Bristol, Sch Geog Sci, Bristol, Avon, England
[4] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA
[5] MIT, Ctr Global Change, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[6] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain
[7] Univ Autonoma Barcelona, Inst Ciencia & Tecnol Ambientals, E-08193 Barcelona, Spain
[8] Univ Autonoma Barcelona, Dept Math, E-08193 Barcelona, Spain
[9] Cent Res Inst Elect Power Ind, Environm Sci Res Lab, Abiko, Chiba, Japan
[10] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA
[11] Univ Calif Riverside, Dept Earth Sci, Riverside, CA 92521 USA
[12] Univ Cape Town, Dept Oceanog, ZA-7925 Cape Town, South Africa
[13] Nansen Tutu Ctr Marine Environm Res, Cape Town, South Africa
[14] Helmholtz Zentrum Polar & Meeresforsch, Alfred Wegener Inst, Bremerhaven, Germany
[15] Univ Southampton, Natl Oceanog Ctr, Southampton, Hants, England
基金
英国工程与自然科学研究理事会;
关键词
iron; ocean; biogeochemistry; climate; model; SOUTHERN-OCEAN; NORTH-ATLANTIC; NATURAL FERTILIZATION; ECOSYSTEM MODEL; COLLOIDAL IRON; CARBON; PHYTOPLANKTON; CYCLE; DUST; IMPACT;
D O I
10.1002/2015GB005289
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Numerical models of ocean biogeochemistry are relied upon to make projections about the impact of climate change on marine resources and test hypotheses regarding the drivers of past changes in climate and ecosystems. In large areas of the ocean, iron availability regulates the functioning of marine ecosystems and hence the ocean carbon cycle. Accordingly, our ability to quantify the drivers and impacts of fluctuations in ocean ecosystems and carbon cycling in space and time relies on first achieving an appropriate representation of the modern marine iron cycle in models. When the iron distributions from 13 global ocean biogeochemistry models are compared against the latest oceanic sections from the GEOTRACES program, we find that all models struggle to reproduce many aspects of the observed spatial patterns. Models that reflect the emerging evidence for multiple iron sources or subtleties of its internal cycling perform much better in capturing observed features than their simpler contemporaries, particularly in the ocean interior. We show that the substantial uncertainty in the input fluxes of iron results in a very wide range of residence times across models, which has implications for the response of ecosystems and global carbon cycling to perturbations. Given this large uncertainty, iron fertilization experiments based on any single current generation model should be interpreted with caution. Improvements to how such models represent iron scavenging and also biological cycling are needed to raise confidence in their projections of global biogeochemical change in the ocean.
引用
收藏
页码:149 / 174
页数:26
相关论文
共 88 条
[1]  
Anderson R.F., 2003, Treatise on Geochemistry, P247, DOI DOI 10.1016/B0-08-043751-6/06111-9
[2]   A Model of the iron cycle in the ocean [J].
Archer, DE ;
Johnson, K .
GLOBAL BIOGEOCHEMICAL CYCLES, 2000, 14 (01) :269-279
[3]   An ecosystem model of the global ocean including Fe, Si, P colimitations [J].
Aumont, O ;
Maier-Reimer, E ;
Blain, S ;
Monfray, P .
GLOBAL BIOGEOCHEMICAL CYCLES, 2003, 17 (02)
[4]   PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies [J].
Aumont, O. ;
Ethe, C. ;
Tagliabue, A. ;
Bopp, L. ;
Gehlen, M. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2015, 8 (08) :2465-2513
[5]   Role of protozoan grazing in relieving iron limitation of phytoplankton [J].
Barbeau, K ;
Moffett, JW ;
Caron, DA ;
Croot, PL ;
Erdner, DL .
NATURE, 1996, 380 (6569) :61-64
[6]   Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models [J].
Bopp, L. ;
Resplandy, L. ;
Orr, J. C. ;
Doney, S. C. ;
Dunne, J. P. ;
Gehlen, M. ;
Halloran, P. ;
Heinze, C. ;
Ilyina, T. ;
Seferian, R. ;
Tjiputra, J. ;
Vichi, M. .
BIOGEOSCIENCES, 2013, 10 (10) :6225-6245
[7]   Iron budgets for three distinct biogeochemical sites around the Kerguelen Archipelago (Southern Ocean) during the natural fertilisation study, KEOPS-2 [J].
Bowie, A. R. ;
van der Merwe, P. ;
Queroue, F. ;
Trull, T. ;
Fourquez, M. ;
Planchon, F. ;
Sarthou, G. ;
Chever, F. ;
Townsend, A. T. ;
Obernosterer, I. ;
Sallee, J. -B. ;
Blain, S. .
BIOGEOSCIENCES, 2015, 12 (14) :4421-4445
[8]   Biogeochemical iron budgets of the Southern Ocean south of Australia: Decoupling of iron and nutrient cycles in the subantarctic zone by the summertime supply [J].
Bowie, Andrew R. ;
Lannuzel, Delphine ;
Remenyi, Tomas A. ;
Wagener, Thibaut ;
Lam, Phoebe J. ;
Boyd, Philip W. ;
Guieu, Cecile ;
Townsend, Ashley T. ;
Trull, Thomas W. .
GLOBAL BIOGEOCHEMICAL CYCLES, 2009, 23
[9]   Why are biotic iron pools uniform across high- and low-iron pelagic ecosystems? [J].
Boyd, P. W. ;
Strzepek, R. F. ;
Ellwood, M. J. ;
Hutchins, D. A. ;
Nodder, S. D. ;
Twining, B. S. ;
Wilhelm, S. W. .
GLOBAL BIOGEOCHEMICAL CYCLES, 2015, 29 (07) :1028-1043
[10]  
Boyd PW, 2010, NAT GEOSCI, V3, P675, DOI [10.1038/ngeo964, 10.1038/NGEO964]