A counterexample to Montgomery's conjecture on dynamic colourings of regular graphs

被引:7
作者
Bowler, N. [1 ]
Erde, J. [1 ]
Lehner, F. [1 ]
Merker, M. [1 ]
Pitz, M. [1 ]
Stavropoulos, K. [1 ]
机构
[1] Univ Hamburg, Dept Math, Bundesstr 55 Geomatikum, D-20146 Hamburg, Germany
关键词
Graph colouring; Dynamic colouring; CHROMATIC NUMBER; UPPER-BOUNDS;
D O I
10.1016/j.dam.2017.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A dynamic colouring of a graph is a proper colouring in which no neighbourhood of a non leaf vertex is monochromatic. The dynamic colouring number chi(2)(G) of a graph G is the least number of colours needed for a dynamic colouring of G. Montgomery conjectured that chi(2)(G) <= chi(G) + 2 for all regular graphs G, which would significantly improve the best current upper bound chi(2)(G) <= 2 chi (G). In this note, however, we show that this last upper bound is sharp by constructing, for every integer n >= 2, a regular graph G with chi(G) = n but chi(2)(G) = 2n. In particular, this disproves Montgomery's conjecture. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:151 / 153
页数:3
相关论文
共 17 条
[1]   On the difference between chromatic number and dynamic chromatic number of graphs [J].
Ahadi, A. ;
Akbari, S. ;
Dehghan, A. ;
Ghanbari, M. .
DISCRETE MATHEMATICS, 2012, 312 (17) :2579-2583
[2]  
Akbari S, 2010, CONTEMP MATH, V531, P11
[3]   On the list dynamic coloring of graphs [J].
Akbari, S. ;
Ghanbari, M. ;
Jahanbekam, S. .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (14) :3005-3007
[4]   Dynamic chromatic number of regular graphs [J].
Alishahi, Meysam .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (15) :2098-2103
[5]   On the dynamic coloring of graphs [J].
Alishahi, Meysam .
DISCRETE APPLIED MATHEMATICS, 2011, 159 (2-3) :152-156
[6]   On dynamic coloring for planar graphs and graphs of higher genus [J].
Chen, Ye ;
Fan, Suohai ;
Lai, Hong-Jian ;
Song, Huimin ;
Sun, Lei .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) :1064-1071
[7]   DISJOINT INDEPENDENT DOMINATING SETS IN GRAPHS [J].
COCKAYNE, EJ ;
HEDETNIEMI, ST .
DISCRETE MATHEMATICS, 1976, 15 (03) :213-222
[8]   Upper bounds for the 2-hued chromatic number of graphs in terms of the independence number [J].
Dehghan, A. ;
Ahadi, A. .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (15) :2142-2146
[9]   On r-dynamic coloring of graphs [J].
Jahanbekam, Sogol ;
Kim, Jaehoon ;
Suil, O. ;
West, Douglas B. .
DISCRETE APPLIED MATHEMATICS, 2016, 206 :65-72
[10]   On r-dynamic coloring of grids [J].
Kang, Ross ;
Muller, Tobias ;
West, Douglas B. .
DISCRETE APPLIED MATHEMATICS, 2015, 186 :286-290