On the edge irregular reflexive labeling of corona product of graphs with path

被引:4
作者
Yoong, Kooi-Kuan [1 ]
Hasni, Roslan [1 ]
Irfan, Muhammad [2 ]
Taraweh, Ibrahim [3 ]
Ahmad, Ali [4 ]
Lee, Sin-Min [5 ]
机构
[1] Univ Malaysia Terengganu, Fac Ocean Engn Technol & Informat, Kuala Nerus, Malaysia
[2] Univ Okara, Dept Math, Okara, Pakistan
[3] Khalid Ibn Al Walid Sch, Math, Al Karak, Jordan
[4] Coll Comp Sci & Informat Technol, Jazan, Saudi Arabia
[5] San Jose State Univ, Dept Comp Sci, San Jose, CA 95192 USA
关键词
Edge irregular reflexive labeling; reflexive edge strength; corona product; path; complete graph; STRENGTH;
D O I
10.1080/09728600.2021.1931555
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a total k-labeling phi of a graph G as a combination of an edge labeling phi(e):E(G)->{1,2,...,k(e)} and a vertex labeling phi(v):V(G)->{0,2,...,2k(v)}, such that phi(x) = phi(v)(x) if x is an element of V(G) and phi(x) = phi(e)(x) if x is an element of E (G), where k = max {k(e),2k(v)}. The total k-labeling phi is called an edge irregular reflexive k-labeling of G if every two different edges has distinct edge weights, where the edge weight is defined as the summation of the edge label itself and its two vertex labels. Thus, the smallest value of k for which the graph G has the edge irregular reflexive k-labeling is called the reflexive edge strength of G. In this paper, we study the edge irregular reflexive labeling of corona product of two paths and corona product of a path with isolated vertices. We determine the reflexive edge strength for these graphs.
引用
收藏
页码:53 / 59
页数:7
相关论文
共 50 条
[31]   Irregular total labeling of wheel related graphs [J].
Bokhary, Syed Ahtsham ul Haq ;
Ali, Usman ;
Maqbool, Sahar .
UTILITAS MATHEMATICA, 2018, 107 :231-242
[32]   PERFECTLY ANTIMAGIC TOTAL LABELING OF STAR-LIKE TREES AND THE CORONA PRODUCT OF TWO GRAPHS [J].
Swathi, P. ;
Jeyabalan, R. .
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2024, 93 (02) :95-100
[33]   Vertex irregular total labeling of cubic graphs [J].
Ahmad, Ali ;
Bokhary, Syed Ahtsham ul Haq ;
Imran, Muhammad ;
Baig, A. Q. .
UTILITAS MATHEMATICA, 2013, 91 :287-299
[34]   A REVIEW PAPER ON CORONA PRODUCT OF GRAPHS [J].
Singh, Gajendra Pratap ;
Borah, Aparajita ;
Ray, Sangram .
ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2020, 19 (10) :1047-1054
[35]   ON THE CORONA PRODUCT OF MONOGENIC SEMIGROUP GRAPHS [J].
Nacaroglu, Yasar .
ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2018, 19 (04) :409-420
[36]   Identifying codes of corona product graphs [J].
Feng, Min ;
Wang, Kaishun .
DISCRETE APPLIED MATHEMATICS, 2014, 169 :88-96
[37]   Corona Product of Soft Directed Graphs [J].
Jose, Jinta ;
George, Bobin ;
Thumbakara, Rajesh K. .
NEW MATHEMATICS AND NATURAL COMPUTATION, 2024,
[38]   A Study of Anti-Magic Graphs on Corona Product of Complete Graphs and Complete Bipartite Graphs [J].
Muya, James Githinji ;
Shobhalatha, G. .
COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2022, 13 (05) :1337-1345
[39]   The reflexive edge strength on some almost regular graphs [J].
Agustin, Ika Hesti ;
Dafik ;
Utoyo, M. Imam ;
Slamin ;
Venkatachalam, M. .
HELIYON, 2021, 7 (05)
[40]   Totally irregular total labeling of some caterpillar graphs [J].
Indriati, Diari ;
Widodo ;
Wijayanti, Indah E. ;
Sugeng, Kiki A. ;
Rosyida, Isnaini .
ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2020, 8 (02) :247-254