On the edge irregular reflexive labeling of corona product of graphs with path

被引:4
作者
Yoong, Kooi-Kuan [1 ]
Hasni, Roslan [1 ]
Irfan, Muhammad [2 ]
Taraweh, Ibrahim [3 ]
Ahmad, Ali [4 ]
Lee, Sin-Min [5 ]
机构
[1] Univ Malaysia Terengganu, Fac Ocean Engn Technol & Informat, Kuala Nerus, Malaysia
[2] Univ Okara, Dept Math, Okara, Pakistan
[3] Khalid Ibn Al Walid Sch, Math, Al Karak, Jordan
[4] Coll Comp Sci & Informat Technol, Jazan, Saudi Arabia
[5] San Jose State Univ, Dept Comp Sci, San Jose, CA 95192 USA
关键词
Edge irregular reflexive labeling; reflexive edge strength; corona product; path; complete graph; STRENGTH;
D O I
10.1080/09728600.2021.1931555
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a total k-labeling phi of a graph G as a combination of an edge labeling phi(e):E(G)->{1,2,...,k(e)} and a vertex labeling phi(v):V(G)->{0,2,...,2k(v)}, such that phi(x) = phi(v)(x) if x is an element of V(G) and phi(x) = phi(e)(x) if x is an element of E (G), where k = max {k(e),2k(v)}. The total k-labeling phi is called an edge irregular reflexive k-labeling of G if every two different edges has distinct edge weights, where the edge weight is defined as the summation of the edge label itself and its two vertex labels. Thus, the smallest value of k for which the graph G has the edge irregular reflexive k-labeling is called the reflexive edge strength of G. In this paper, we study the edge irregular reflexive labeling of corona product of two paths and corona product of a path with isolated vertices. We determine the reflexive edge strength for these graphs.
引用
收藏
页码:53 / 59
页数:7
相关论文
共 50 条
  • [21] On Edge Irregular Total Labeling of Categorical Product of Two Cycles
    Ahmad, Ali
    Baca, Martin
    Siddiqui, Muhammad Kamran
    THEORY OF COMPUTING SYSTEMS, 2014, 54 (01) : 1 - 12
  • [22] On the reflexive edge strength of the circulant graphs
    Basher, Mohamed
    AIMS MATHEMATICS, 2021, 6 (09): : 9342 - 9365
  • [23] EDGE IRREGULAR REFLEXIVE LABELING ON DOUBLE BROOM GRAPH AND COMB OF CYCLE AND STAR GRAPH
    Vinatih, A. R. S.
    Indriati, B. D.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2025, 15 (03): : 748 - 761
  • [24] THE HYPER EDGE-WIENER INDEX OF CORONA PRODUCT OF GRAPHS
    Soltani, A.
    Iranmanesh, A.
    TRANSACTIONS ON COMBINATORICS, 2015, 4 (03) : 1 - 9
  • [25] On the edge irregularity strength of bipartite graph and corona product of two graphs
    Alrawajfeh, Alaa
    Al-Hasanat, Bilal N. A.
    Alhasanat, Hothifa
    Al Faqih, Feras M.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2021, 16 (02) : 639 - 645
  • [26] H-Supermagic Labeling on Corona Product of Fan and Ladder Graph with a Path
    Dewi, R. K.
    Roswitha, M.
    Martini, T. S.
    PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2017 (ISCPMS2017), 2018, 2023
  • [27] ON r-HUED COLORING OF CORONA PRODUCT OF SOME GRAPHS
    Kaliraj, Kalimuthu
    Vivin, Joseph Vernold
    Tamilselvan, Ganesan Thangaponnu
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2024, 36 (01) : 121 - 129
  • [28] Path 3-(edge-)connectivity of lexicographic product graphs
    Ma, Tianlong
    Wang, Jinling
    Zhang, Mingzu
    Liang, Xiaodong
    DISCRETE APPLIED MATHEMATICS, 2020, 282 : 152 - 161
  • [29] On reflexive edge strength of generalized prism graphs
    Irfan, Muhammad
    Baca, Martin
    Semanicova-Fenovcikova, Andrea
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2022, 10 (02) : 415 - 424
  • [30] On the fractional metric dimension of corona product graphs and lexicographic product graphs
    Feng, Min
    Kong, Qian
    ARS COMBINATORIA, 2018, 138 : 249 - 260