Matrix completion by least-square, low-rank, and sparse self-representations

被引:53
|
作者
Fan, Jicong [1 ]
Chow, Tommy W. S. [1 ]
机构
[1] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
关键词
Matrix completion; Missing value; Low-rank and sparse representations; Image inpainting; Collaborative filtering; ALGORITHM;
D O I
10.1016/j.patcog.2017.05.013
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Conventional matrix completion methods are generally based on rank minimization. These methods assume that the given matrix is of low-rank and the data points are drawn from a single subspace of low-dimensionality. Therefore they are not effective in completing matrices where the data are drawn from multiple subspaces. In this paper, we establish a novel matrix completion framework that is based on self-representation. Specifically, least-square, low-rank, and sparse self-representations based matrix completion algorithms are provided. The underlying idea is that one data point can be efficiently reconstructed by other data points belonging to a common subspace, where the missing entries are recovered so as to fit the common subspace. The proposed algorithms actually maximize the weighted correlations among the columns of a given matrix. We prove that the proposed algorithms are approximations for rank-minimization of the incomplete matrix. In addition, they are able to complete high-rank or even full rank matrices when the data are drawn from multiple subspaces. Comparative studies are conducted on synthetic datasets, natural image inpainting tasks, temperature prediction task, and collaborative filtering tasks. The results show that the proposed algorithms often outperform other state-of-the-art algorithms in various tasks. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:290 / 305
页数:16
相关论文
共 50 条
  • [1] Low-Rank and Sparse Matrix Completion for Recommendation
    Zhao, Zhi-Lin
    Huang, Ling
    Wang, Chang-Dong
    Lai, Jian-Huang
    Yu, Philip S.
    NEURAL INFORMATION PROCESSING, ICONIP 2017, PT V, 2017, 10638 : 3 - 13
  • [2] LOW-RANK MATRIX COMPLETION BY VARIATIONAL SPARSE BAYESIAN LEARNING
    Babacan, S. Derin
    Luessi, Martin
    Molina, Rafael
    Katsaggelos, Aggelos K.
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2188 - 2191
  • [3] Low-Rank Matrix Completion
    Chi, Yuejie
    IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (05) : 178 - 181
  • [4] Denoising by low-rank and sparse representations
    Nejati, Mansour
    Samavi, Shadrokh
    Derksen, Harm
    Najarian, Kayvan
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 36 : 28 - 39
  • [5] Robust Low-Rank and Sparse Tensor Decomposition for Low-Rank Tensor Completion
    Shi, Yuqing
    Du, Shiqiang
    Wang, Weilan
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 7138 - 7143
  • [6] Improving Low-Rank Matrix Completion with Self-Expressiveness
    Kwon, Minsu
    Kim, Han-Gyu
    Choi, Ho-Jin
    CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2018, : 1651 - 1654
  • [7] A Converse to Low-Rank Matrix Completion
    Pimentel-Alarcon, Daniel L.
    Nowak, Robert D.
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 96 - 100
  • [8] DECENTRALIZED LOW-RANK MATRIX COMPLETION
    Ling, Qing
    Xu, Yangyang
    Yin, Wotao
    Wen, Zaiwen
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 2925 - 2928
  • [9] Adaptive Low-Rank Matrix Completion
    Tripathi, Ruchi
    Mohan, Boda
    Rajawat, Ketan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (14) : 3603 - 3616
  • [10] Matrix Completion and Low-Rank SVD via Fast Alternating Least Squares
    Hastie, Trevor
    Mazumder, Rahul
    Lee, Jason D.
    Zadeh, Reza
    JOURNAL OF MACHINE LEARNING RESEARCH, 2015, 16 : 3367 - 3402