A dynamic renormalization group study of active nematics

被引:30
作者
Mishra, Shradha [1 ]
Simha, R. Aditi [2 ]
Ramaswamy, Sriram [3 ]
机构
[1] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
[2] Indian Inst Technol Madras, Dept Phys, Madras 600036, Tamil Nadu, India
[3] Indian Inst Sci, Ctr Condensed Matter Theory, Dept Phys, Bangalore 560012, Karnataka, India
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2010年
关键词
granular matter; active membranes; self-propelled particles; passive and active self-assembly; LONG-RANGE ORDER; PHASE-TRANSITION; LIQUID-CRYSTALS;
D O I
10.1088/1742-5468/2010/02/P02003
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We carry out a systematic construction of the coarse-grained dynamical equation of motion for the orientational order parameter for a two-dimensional active nematic, that is a nonequilibrium steady state with uniaxial, apolar orientational order. Using the dynamical renormalization group, we show that the leading nonlinearities in this equation are marginally irrelevant. We discover a special limit of parameters in which the equation of motion for the angle field bears a close relation to the 2d stochastic Burgers equation. We find nevertheless that, unlike for the Burgers problem, the nonlinearity is marginally irrelevant even in this special limit, as a result of a hidden fluctuation-dissipation relation. 2d active nematics therefore have quasi-long-range order, just like their equilibrium counterparts.
引用
收藏
页数:23
相关论文
共 34 条
  • [1] Barabsi A-L., 1995, Fractal Concepts in Surface Growth, DOI [10.1017/CBO9780511599798, DOI 10.1017/CBO9780511599798]
  • [2] Simple model for active nematics:: Quasi-long-range order and giant fluctuations
    Chaté, H
    Ginelli, F
    Montagne, R
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (18)
  • [3] Spontaneously ordered motion of self-propelled particles
    Czirok, A
    Stanley, HE
    Vicsek, T
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (05): : 1375 - 1385
  • [4] de Gennes P G., 1995, The Physics of Liquid Crystals, DOI DOI 10.1063/1.2808028
  • [5] DOI M, 1981, J POLYM SCI POL PHYS, V19, P229, DOI 10.1002/pol.1981.180190205
  • [6] LARGE-DISTANCE AND LONG-TIME PROPERTIES OF A RANDOMLY STIRRED FLUID
    FORSTER, D
    NELSON, DR
    STEPHEN, MJ
    [J]. PHYSICAL REVIEW A, 1977, 16 (02): : 732 - 749
  • [7] MICROSCOPIC THEORY OF FLOW ALIGNMENT IN NEMATIC LIQUID-CRYSTALS
    FORSTER, D
    [J]. PHYSICAL REVIEW LETTERS, 1974, 32 (21) : 1161 - 1164
  • [8] ON THE THEORY OF LIQUID CRYSTALS
    FRANK, FC
    [J]. DISCUSSIONS OF THE FARADAY SOCIETY, 1958, (25): : 19 - 28
  • [9] 2-LOOP RENORMALIZATION-GROUP ANALYSIS OF THE BURGERS-KARDAR-PARISI-ZHANG EQUATION
    FREY, E
    TAUBER, UC
    [J]. PHYSICAL REVIEW E, 1994, 50 (02) : 1024 - 1045
  • [10] THEORY OF DYNAMIC CRITICAL PHENOMENA
    HOHENBERG, PC
    HALPERIN, BI
    [J]. REVIEWS OF MODERN PHYSICS, 1977, 49 (03) : 435 - 479