Proteomic analysis of pollination-induced corolla senescence in petunia

被引:33
作者
Bai, Shuangyi [1 ]
Willard, Belinda [2 ]
Chapin, Laura J. [1 ]
Kinter, Michael T. [2 ]
Francis, David M. [1 ]
Stead, Anthony D. [3 ]
Jones, Michelle L.
机构
[1] Ohio State Univ, Ohio Agr Res & Dev Ctr, Dept Hort & Crop Sci, Wooster, OH 44691 USA
[2] Cleveland Clin Fdn, Lerner Res Inst, Prote Lab, Cleveland, OH 44195 USA
[3] Royal Holloway Univ London, Sch Biol Sci, Egham TW20 0EX, Surrey, England
关键词
Abscisic acid; carbohydrates; flowers; hormones; petals; programmed cell death; PROGRAMMED CELL-DEATH; GENE-EXPRESSION; LEAF SENESCENCE; FLOWER SENESCENCE; ARABIDOPSIS-THALIANA; PROTEOLYTIC ACTIVITY; RESPONSIVE PROTEINS; PETAL SENESCENCE; STRESS; METABOLISM;
D O I
10.1093/jxb/erp373
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Senescence represents the last phase of petal development during which macromolecules and organelles are degraded and nutrients are recycled to developing tissues. To understand better the post-transcriptional changes regulating petal senescence, a proteomic approach was used to profile protein changes during the senescence of Petuniaxhybrida 'Mitchell Diploid' corollas. Total soluble proteins were extracted from unpollinated petunia corollas at 0, 24, 48, and 72 h after flower opening and at 24, 48, and 72 h after pollination. Two-dimensional gel electrophoresis (2-DE) was used to identify proteins that were differentially expressed in non-senescing (unpollinated) and senescing (pollinated) corollas, and image analysis was used to determine which proteins were up- or down-regulated by the experimentally determined cut-off of 2.1-fold for P < 0.05. One hundred and thirty-three differentially expressed protein spots were selected for sequencing. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine the identity of these proteins. Searching translated EST databases and the NCBI non-redundant protein database, it was possible to assign a putative identification to greater than 90% of these proteins. Many of the senescence up-regulated proteins were putatively involved in defence and stress responses or macromolecule catabolism. Some proteins, not previously characterized during flower senescence, were identified, including an orthologue of the tomato abscisic acid stress ripening protein 4 (ASR4). Gene expression patterns did not always correlate with protein expression, confirming that both proteomic and genomic approaches will be required to obtain a detailed understanding of the regulation of petal senescence.
引用
收藏
页码:1089 / 1109
页数:21
相关论文
共 79 条
[1]   A comparative proteomic analysis of tomato leaves in response to waterlogging stress [J].
Ahsan, Nagib ;
Lee, Dong-Gi ;
Lee, Sang-Hoon ;
Kang, Kyu Young ;
Bahk, Jeong Dong ;
Choi, Myung Suk ;
Lee, In-Jung ;
Renaut, Jenny ;
Lee, Byung-Hyun .
PHYSIOLOGIA PLANTARUM, 2007, 131 (04) :555-570
[2]   HOW LONG SHOULD FLOWERS LIVE [J].
ASHMAN, TL ;
SCHOEN, DJ .
NATURE, 1994, 371 (6500) :788-791
[3]   Effects of salinity levels on proteome of Suaeda aegyptiaca leaves [J].
Askari, H ;
Edqvist, J ;
Hajheidari, M ;
Kafi, M ;
Salekdeh, GH .
PROTEOMICS, 2006, 6 (08) :2542-2554
[4]   Functional annotation of the Arabidopsis genome using controlled vocabularies [J].
Berardini, TZ ;
Mundodi, S ;
Reiser, L ;
Huala, E ;
Garcia-Hernandez, M ;
Zhang, PF ;
Mueller, LA ;
Yoon, J ;
Doyle, A ;
Lander, G ;
Moseyko, N ;
Yoo, D ;
Xu, I ;
Zoeckler, B ;
Montoya, M ;
Miller, N ;
Weems, D ;
Rhee, SY .
PLANT PHYSIOLOGY, 2004, 135 (02) :745-755
[5]   Gene expression in autumn leaves [J].
Bhalerao, R ;
Keskitalo, J ;
Sterky, F ;
Erlandsson, R ;
Björkbacka, H ;
Birve, SJ ;
Karlsson, J ;
Gardeström, P ;
Gustafsson, P ;
Lundeberg, J ;
Jansson, S .
PLANT PHYSIOLOGY, 2003, 131 (02) :430-442
[6]  
BOROCHOV A, 1994, PHYSIOL PLANTARUM, V90, P279, DOI 10.1111/j.1399-3054.1994.tb00388.x
[7]   Gene expression patterns to define stages of post-harvest senescence in Alstroemeria petals (vol 2, pg 155, 2004) [J].
Breeze, E ;
Wagstaff, C ;
Harrison, E ;
Bramke, I ;
Rogers, H ;
Stead, A ;
Thomas, B ;
Buchanan-Wollaston, V .
PLANT BIOTECHNOLOGY JOURNAL, 2004, 2 (06) :525-525
[8]   Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis [J].
Buchanan-Wollaston, V ;
Page, T ;
Harrison, E ;
Breeze, E ;
Lim, PO ;
Nam, HG ;
Lin, JF ;
Wu, SH ;
Swidzinski, J ;
Ishizaki, K ;
Leaver, CJ .
PLANT JOURNAL, 2005, 42 (04) :567-585
[9]   The molecular analysis of leaf senescence - a genomics approach [J].
Buchanan-Wollaston, V ;
Earl, S ;
Harrison, E ;
Mathas, E ;
Navabpour, S ;
Page, T ;
Pink, D .
PLANT BIOTECHNOLOGY JOURNAL, 2003, 1 (01) :3-22
[10]   A grape ASR protein involved in sugar and abscisic acid signaling [J].
Çakir, B ;
Agasse, A ;
Gaillard, C ;
Saumonneau, A ;
Delrot, S ;
Atanassova, R .
PLANT CELL, 2003, 15 (09) :2165-2180