Zeros of combinations of Euler products for σ > 1

被引:0
作者
Righetti, Mattia [1 ]
机构
[1] Univ Genoa, Dipartimento Matemat, Via Dodecaneso 35, I-16146 Genoa, Italy
来源
MONATSHEFTE FUR MATHEMATIK | 2016年 / 180卷 / 02期
关键词
Non-trivial zeros; Polynomial Euler products; Selberg class; Riemann hypothesis; Dirichlet density; DIRICHLET SERIES; CONJECTURE;
D O I
10.1007/s00605-015-0773-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider Dirichlet series absolutely converging for with an Euler product, natural bounds on the coefficients and satisfying orthogonality relations of Selberg type. Let , be as above and be a non-monomial polynomial with coefficients in the ring of p-finite Dirichlet series absolutely converging for ; then has infinitely many zeros for . Our result in particular applies to Artin L-functions, automorphic L-functions under the Ramanujan conjecture, and the elements of the Selberg class with polynomial Euler product under the Selberg orthonormality conjecture. This extends the work of Booker and Thorne (Algebr Number Theory 8:2027-2042, 2014), who proved the same result for automorphic L-functions under the Ramanujan conjecture. Our proof avoids to use the properties of twists by Dirichlet characters, a key point in Booker and Thorne's proof, replacing them by results on the Dirichlet density of non-zero coefficients of L-functions of the above type.
引用
收藏
页码:337 / 356
页数:20
相关论文
共 25 条
  • [1] Apostol T., 1990, Modular Functions and Dirichlet Series in Number Theory (Graduate Texts in Mathematics), Vvol 41
  • [2] On the distribution of zeros of linear combinations of Euler products
    Bombieri, E
    Hejhal, DA
    [J]. DUKE MATHEMATICAL JOURNAL, 1995, 80 (03) : 821 - 862
  • [3] Around the Davenport-Heilbronn function
    Bombieri, E.
    Ghosh, A.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2011, 66 (02) : 221 - 270
  • [4] Zeros of L-functions outside the critical strip
    Booker, Andrew R.
    Thorne, Frank
    [J]. ALGEBRA & NUMBER THEORY, 2014, 8 (09) : 2027 - 2042
  • [5] Cassels J.W.S., 1961, J. Lond. Math. Soc, V36, P177, DOI [10.1112/jlms/s1-36.1.177, DOI 10.1112/JLMS/S1-36.1.177]
  • [6] TURAN INEQUALITIES AND ZEROS OF DIRICHLET SERIES ASSOCIATED WITH CERTAIN CUSP FORMS
    CONREY, JB
    GHOSH, A
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 342 (01) : 407 - 419
  • [7] Davenport H., 1936, J. London Math. Soc, V11, P181, DOI [10.1112/jlms/s1-11.3.181, DOI 10.1112/JLMS/S1-11.3.181]
  • [8] Escher J., 2006, ANALYSIS, V1
  • [9] Iwaniec H, 2000, GEOM FUNCT ANAL, P705
  • [10] Kac Mark, 1959, The Carus Mathematical Monographs, V12