Chemistry of Ruthenium Diketonate Atomic Layer Deposition (ALD) Precursors on Metal Surfaces

被引:19
|
作者
Qin, Xiangdong [1 ]
Zaera, Francisco [1 ]
机构
[1] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA
关键词
CHEMICAL-VAPOR-DEPOSITION; THIN-FILM GROWTH; DIFFUSION BARRIER; MECHANISTIC DETAILS; THERMAL CHEMISTRY; NOBLE-METALS; COPPER; DECOMPOSITION; OXIDE; CU;
D O I
10.1021/acs.jpcc.7b11960
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The thermal chemistry of tris(2,2,6,6-tetramethyl-3,5-heptanedionato)ruthenium(III) (Ru(tmhd)(3)), a potential precursor for the chemical deposition of ruthenium-containing films, on Ni(110) single-crystal surfaces was characterized by using a combination of temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), and reflection absorption infrared spectroscopy (RAIRS). Additional characterization of the surface chemistry of the protonated ligand, Htmhd, was evaluated as well for reference. It was found that the molecularly adsorbed ruthenium compound reacts readily by approximately 310 K, loosing its ligands to both the gas phase and the surface as the central ion is reduced to its Ru metallic state. The diketonate ligand, now bonded to the nickel surface, starts to decompose at around 400 K, and generates gas-phase carbon monoxide and molecular hydrogen in TPD peaks at 435 K. More extensive decomposition is seen at 535 K, yielding 2,2-dimethyl-3-oxopentanal, isobutene, ketene, and carbon monoxide, and also carbon dioxide and molecular hydrogen at slightly higher temperatures. The XPS data corroborate the early reduction of the metal center and the losses of carbon- and oxygen-containing adsorbates to the gas phase, and the RAIRS traces show similar chemistry followed by the Ru complex and the free ligand, both converting via an initial decarbonylation step and a subsequent loss of the terminal tert-butyl groups. The early decomposition of the ligand on the metal surface points to potential problems with the clean deposition of metal films using diketonate complexes, but the ease with which those ligands are displaced from the central ion suggests that there is a potential for low-temperature film deposition chemistry under specific circumstances.
引用
收藏
页码:13481 / 13491
页数:11
相关论文
共 50 条
  • [41] Competitive interplay of deposition and etching processes in atomic layer growth of cobalt and nickel metal films
    Sasinska, Alexander
    Leduc, Jennifer
    Frank, Michael
    Czympiel, Lisa
    Fischer, Thomas
    Christiansen, Silke H.
    Mathur, Sanjay
    JOURNAL OF MATERIALS RESEARCH, 2018, 33 (24) : 4241 - 4250
  • [42] Molybdenum diselenide formation using electrochemical atomic layer deposition (E-ALD)
    Tsang, Chu F.
    Ledina, Maria A.
    Stickney, John L.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2017, 793 : 242 - 249
  • [43] Low Temperature Thermal Atomic Layer Deposition of Cobalt Metal Films
    Klesko, Joseph P.
    Kerrigan, Marissa M.
    Winter, Charles H.
    CHEMISTRY OF MATERIALS, 2016, 28 (03) : 700 - 703
  • [44] Influences of metal, non-metal precursors, and substrates on atomic layer deposition processes for the growth of selected functional electronic materials
    Lee, Sang Woon
    Choi, Byung Joon
    Eom, Taeyong
    Han, Jeong Hwan
    Kim, Seong Keun
    Song, Seul Ji
    Lee, Woongkyu
    Hwang, Cheol Seong
    COORDINATION CHEMISTRY REVIEWS, 2013, 257 (23-24) : 3154 - 3176
  • [45] Cyclopentadienyl Precursors for the Atomic Layer Deposition of Erbium Oxide Thin Films
    Blanquart, Timothee
    Kaipio, Mikko
    Niinisto, Jaakko
    Gavagnin, Marco
    Longo, Valentino
    Blanquart, Laurie
    Lansalot, Clement
    Noh, W.
    Wanzenbock, Heinz D.
    Ritala, Mikko
    Leskela, Markku
    CHEMICAL VAPOR DEPOSITION, 2014, 20 (7-9) : 217 - 223
  • [46] Role of Anionic Backbone in NHC-Stabilized Coinage Metal Complexes: New Precursors for Atomic Layer Deposition**
    Boysen, Nils
    Philip, Anish
    Rogalla, Detlef
    Karppinen, Maarit
    Devi, Anjana
    CHEMISTRY-A EUROPEAN JOURNAL, 2022, 28 (16)
  • [47] Atomic Layer Deposition of Ruthenium and Ruthenium Oxide Using a Zero-Oxidation State Precursor
    Austin, Dustin Z.
    Jenkins, Melanie A.
    Allman, Derryl
    Hose, Sallie
    Price, David
    Dezelah, Charles L.
    Conley, John F., Jr.
    CHEMISTRY OF MATERIALS, 2017, 29 (03) : 1107 - 1115
  • [48] Atomic Layer Deposition of Groups 4 and 5 Transition Metal Oxide Thin Films: Focus on Heteroleptic Precursors
    Blanquart, Timothee
    Niinisto, Jaakko
    Ritala, Mikko
    Leskela, Markku
    CHEMICAL VAPOR DEPOSITION, 2014, 20 (7-9) : 189 - 208
  • [49] Recent Advances Using Guanidinate Ligands for Chemical Vapour Deposition (CVD) and Atomic Layer Deposition (ALD) Applications
    Kurek, Agnieszka
    Gordon, Peter G.
    Karle, Sarah
    Devi, Anjana
    Barry, Sean T.
    AUSTRALIAN JOURNAL OF CHEMISTRY, 2014, 67 (07) : 989 - 996
  • [50] Transition Metal Dichalcogenide TiS2 Prepared by Hybrid Atomic Layer Deposition/Molecular Layer Deposition: Atomic-Level Insights with In Situ Synchrotron X-ray Studies and Molecular Surface Chemistry
    Younes, Petros Abi
    Skopin, Evgeniy
    Zhukush, Medet
    Rapenne, Laetitia
    Roussel, Herve
    Aubert, Nicolas
    Khrouz, Lhoussain
    Licitra, Christophe
    Camp, Clement
    Richard, Marie-Ingrid
    Schneider, Nathanaelle
    Ciatto, Gianluca
    Gauthier, Nicolas
    Rouchon, Denis
    Quadrelli, Elsje Alessandra
    Renevier, Hubert
    CHEMISTRY OF MATERIALS, 2022, 34 (24) : 10885 - 10901