Semantic visual SLAM in dynamic environment

被引:37
作者
Wen, Shuhuan [1 ,2 ]
Li, Pengjiang [1 ,2 ]
Zhao, Yongjie [1 ,2 ]
Zhang, Hong [3 ]
Sun, Fuchun [4 ]
Wang, Zhe [1 ,2 ]
机构
[1] Yanshan Univ, Minist Educ Intelligent Control Syst & Intelligen, Engn Res Ctr, Qinhuangdao, Hebei, Peoples R China
[2] Yanshan Univ, Key Lab Ind Comp Control Engn Hebei Prov, Qinhuangdao, Hebei, Peoples R China
[3] Univ Alberta, Dept Comp Sci, Edmonton, AB T6G 2E8, Canada
[4] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Dept Comp Sci & Technol, Inst Artificial Intelligence,State Key Lab Intell, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Reprojection error; Photometric error; Depth error; Dynamic target detection; Semantic SLAM; RGB-D SLAM;
D O I
10.1007/s10514-021-09979-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human-computer interaction requires accurate localization and effective mapping, while dynamic objects can influence the accuracy of localization and mapping. State-of-the-art SLAM algorithms assume that the environment is static. This paper proposes a new SLAM method that uses mask R-CNN to detect dynamic ob-jects in the environment and build a map containing semantic information. In our method, the reprojection error, photometric error and depth error are used to assign a robust weight to each keypoint. Thus, the dynamic points and the static points can be separated, and the geometric segmentation of the dynamic objects can be realized by using the dynamic keypoints. Each pixel is assigned a semantic label to rebuild a semantic map. Finally, our proposed method is tested on the TUM RGB-D dataset, and the experimental results show that the proposed method outperforms state-of-the-art SLAM algorithms in dynamic environments.
引用
收藏
页码:493 / 504
页数:12
相关论文
共 50 条
[31]   DHDP-SLAM: Dynamic Hierarchical Dirichlet Process based data association for semantic SLAM [J].
Zhao, Yifan ;
Wang, Changhong ;
Ouyang, Yifan ;
Zhong, Jiapeng ;
Li, Yuanwei ;
Zhao, Nannan .
DISPLAYS, 2025, 86
[32]   A real-time semantic visual SLAM approach with points and objects [J].
Guan, Peiyu ;
Cao, Zhiqiang ;
Chen, Erkui ;
Liang, Shuang ;
Tan, Min ;
Yu, Junzhi .
INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2020, 17 (01)
[33]   MN- SLAM: Multi-networks Visual SLAM for Dynamic and Complicated Environments [J].
Ma, Aili ;
Li, Peijun ;
Zhang, Chun ;
Wang, Zhihua ;
Wang, Ziqiang .
2022 11TH INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND APPLICATIONS, ICICA, 2022, :73-77
[34]   PR-SLAM: Parallel Real-Time Dynamic SLAM Method Based on Semantic Segmentation [J].
Zhang, Hongyu ;
Peng, Jiansheng ;
Yang, Qing .
IEEE ACCESS, 2024, 12 :36498-36514
[35]   DGS-SLAM: A Fast and Robust RGBD SLAM in Dynamic Environments Combined by Geometric and Semantic Information [J].
Yan, Li ;
Hu, Xiao ;
Zhao, Leyang ;
Chen, Yu ;
Wei, Pengcheng ;
Xie, Hong .
REMOTE SENSING, 2022, 14 (03)
[36]   RGB-D SLAM in Dynamic Environments with Multilevel Semantic Mapping [J].
Qin, Yusheng ;
Mei, Tiancan ;
Gao, Zhi ;
Lin, Zhipeng ;
Song, Weiwei ;
Zhao, Xuhui .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2022, 105 (04)
[37]   RGB-D SLAM in Dynamic Environments with Multilevel Semantic Mapping [J].
Yusheng Qin ;
Tiancan Mei ;
Zhi Gao ;
Zhipeng Lin ;
Weiwei Song ;
Xuhui Zhao .
Journal of Intelligent & Robotic Systems, 2022, 105
[38]   Semantic-Assisted LIDAR Tightly Coupled SLAM for Dynamic Environments [J].
Liu, Peng ;
Bi, Yuxuan ;
Shi, Jialin ;
Zhang, Tianyi ;
Wang, Caixia .
IEEE ACCESS, 2024, 12 :34042-34053
[39]   Visual SLAM Based on YOLOX-S in Dynamic Scenes [J].
Tian, YingLiang ;
Xu, GaoChao ;
Li, JiaXing ;
Sun, YingJie .
2022 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, COMPUTER VISION AND MACHINE LEARNING (ICICML), 2022, :262-266
[40]   Dynam-SLAM: An Accurate, Robust Stereo Visual-Inertial SLAM Method in Dynamic Environments [J].
Yin, Hesheng ;
Li, Shaomiao ;
Tao, Yu ;
Guo, Junlong ;
Huang, Bo .
IEEE TRANSACTIONS ON ROBOTICS, 2022,