Semantic visual SLAM in dynamic environment

被引:32
作者
Wen, Shuhuan [1 ,2 ]
Li, Pengjiang [1 ,2 ]
Zhao, Yongjie [1 ,2 ]
Zhang, Hong [3 ]
Sun, Fuchun [4 ]
Wang, Zhe [1 ,2 ]
机构
[1] Yanshan Univ, Minist Educ Intelligent Control Syst & Intelligen, Engn Res Ctr, Qinhuangdao, Hebei, Peoples R China
[2] Yanshan Univ, Key Lab Ind Comp Control Engn Hebei Prov, Qinhuangdao, Hebei, Peoples R China
[3] Univ Alberta, Dept Comp Sci, Edmonton, AB T6G 2E8, Canada
[4] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Dept Comp Sci & Technol, Inst Artificial Intelligence,State Key Lab Intell, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Reprojection error; Photometric error; Depth error; Dynamic target detection; Semantic SLAM; RGB-D SLAM;
D O I
10.1007/s10514-021-09979-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human-computer interaction requires accurate localization and effective mapping, while dynamic objects can influence the accuracy of localization and mapping. State-of-the-art SLAM algorithms assume that the environment is static. This paper proposes a new SLAM method that uses mask R-CNN to detect dynamic ob-jects in the environment and build a map containing semantic information. In our method, the reprojection error, photometric error and depth error are used to assign a robust weight to each keypoint. Thus, the dynamic points and the static points can be separated, and the geometric segmentation of the dynamic objects can be realized by using the dynamic keypoints. Each pixel is assigned a semantic label to rebuild a semantic map. Finally, our proposed method is tested on the TUM RGB-D dataset, and the experimental results show that the proposed method outperforms state-of-the-art SLAM algorithms in dynamic environments.
引用
收藏
页码:493 / 504
页数:12
相关论文
共 50 条
  • [21] Semantic Lidar-Inertial SLAM for Dynamic Scenes
    Bu, Zean
    Sun, Changku
    Wang, Peng
    APPLIED SCIENCES-BASEL, 2022, 12 (20):
  • [22] Dynamic Object Tracking and Masking for Visual SLAM
    Vincent, Jonathan
    Labbe, Mathieu
    Lauzon, Jean-Samuel
    Grondin, Francois
    Comtois-Rivet, Pier-Marc
    Michaud, Francois
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 4974 - 4979
  • [23] A semantic visual SLAM towards object selection and tracking optimization
    Sun, Tian
    Cheng, Lei
    Hu, Yaqi
    Yuan, Xiaoping
    Liu, Yong
    APPLIED INTELLIGENCE, 2024, 54 (22) : 11311 - 11324
  • [24] Improved Visual SLAM Using Semantic Segmentation and Layout Estimation
    Mahmoud, Ahmed
    Atia, Mohamed
    ROBOTICS, 2022, 11 (05)
  • [25] Object Detection-based Semantic Map Building for A Semantic Visual SLAM System
    Truong, Phuc H.
    You, Sujeong
    Ji, Sanghoon
    2020 20TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2020, : 1198 - 1201
  • [26] ISFM-SLAM: dynamic visual SLAM with instance segmentation and feature matching
    Li, Chao
    Hu, Yang
    Liu, Jianqiang
    Jin, Jianhai
    Sun, Jun
    FRONTIERS IN NEUROROBOTICS, 2024, 18
  • [27] DP-SLAM: A visual SLAM with moving probability towards dynamic environments
    Li, Ao
    Wang, Jikai
    Xu, Meng
    Chen, Zonghai
    INFORMATION SCIENCES, 2021, 556 : 128 - 142
  • [28] DOPESLAM: High-Precision ROS-Based Semantic 3D SLAM in a Dynamic Environment
    Roch, Jesse
    Fayyad, Jamil
    Najjaran, Homayoun
    SENSORS, 2023, 23 (09)
  • [29] DHDP-SLAM: Dynamic Hierarchical Dirichlet Process based data association for semantic SLAM
    Zhao, Yifan
    Wang, Changhong
    Ouyang, Yifan
    Zhong, Jiapeng
    Li, Yuanwei
    Zhao, Nannan
    DISPLAYS, 2025, 86
  • [30] SD-SLAM: A semantic SLAM approach for dynamic scenes based on LiDAR point clouds
    Li, Feiya
    Fu, Chunyun
    Sun, Dongye
    Li, Jian
    Wang, Jianwen
    BIG DATA RESEARCH, 2024, 36