Semantic visual SLAM in dynamic environment

被引:31
|
作者
Wen, Shuhuan [1 ,2 ]
Li, Pengjiang [1 ,2 ]
Zhao, Yongjie [1 ,2 ]
Zhang, Hong [3 ]
Sun, Fuchun [4 ]
Wang, Zhe [1 ,2 ]
机构
[1] Yanshan Univ, Minist Educ Intelligent Control Syst & Intelligen, Engn Res Ctr, Qinhuangdao, Hebei, Peoples R China
[2] Yanshan Univ, Key Lab Ind Comp Control Engn Hebei Prov, Qinhuangdao, Hebei, Peoples R China
[3] Univ Alberta, Dept Comp Sci, Edmonton, AB T6G 2E8, Canada
[4] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Dept Comp Sci & Technol, Inst Artificial Intelligence,State Key Lab Intell, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Reprojection error; Photometric error; Depth error; Dynamic target detection; Semantic SLAM; RGB-D SLAM;
D O I
10.1007/s10514-021-09979-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human-computer interaction requires accurate localization and effective mapping, while dynamic objects can influence the accuracy of localization and mapping. State-of-the-art SLAM algorithms assume that the environment is static. This paper proposes a new SLAM method that uses mask R-CNN to detect dynamic ob-jects in the environment and build a map containing semantic information. In our method, the reprojection error, photometric error and depth error are used to assign a robust weight to each keypoint. Thus, the dynamic points and the static points can be separated, and the geometric segmentation of the dynamic objects can be realized by using the dynamic keypoints. Each pixel is assigned a semantic label to rebuild a semantic map. Finally, our proposed method is tested on the TUM RGB-D dataset, and the experimental results show that the proposed method outperforms state-of-the-art SLAM algorithms in dynamic environments.
引用
收藏
页码:493 / 504
页数:12
相关论文
共 50 条
  • [1] Semantic visual SLAM in dynamic environment
    Shuhuan Wen
    Pengjiang Li
    Yongjie Zhao
    Hong Zhang
    Fuchun Sun
    Zhe Wang
    Autonomous Robots, 2021, 45 : 493 - 504
  • [2] Semantic -based Dynamic Object Separation Algorithm for Visual SLAM in Dynamic Environment
    Luo, Qingliang
    Wang, Shuting
    Xie, Yuanlong
    Yan, Yiming
    Li, Hu
    2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 937 - 942
  • [3] Visual SLAM technology based on weakly supervised semantic segmentation in dynamic environment
    Liu, Jianxin
    Zeng, Menglan
    Wang, Yuchao
    Liu, Wei
    INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND ROBOTICS 2020, 2020, 11574
  • [4] A Survey of Visual SLAM in Dynamic Environment: The Evolution From Geometric to Semantic Approaches
    Wang, Yanan
    Tian, Yaobin
    Chen, Jiawei
    Xu, Kun
    Ding, Xilun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [5] PS-SLAM: A Visual SLAM for Semantic Mapping in Dynamic Outdoor Environment Using Panoptic Segmentation
    Li, Gang
    Cai, Jinxiang
    Huang, Chen
    Luo, Hao
    Yu, Jian
    IEEE ACCESS, 2025, 13 : 46534 - 46545
  • [6] SOF-SLAM: A Semantic Visual SLAM for Dynamic Environments
    Cui, Linyan
    Ma, Chaowei
    IEEE ACCESS, 2019, 7 : 166528 - 166539
  • [7] Review of Visual SLAM in Dynamic Environment
    Wang K.
    Yao X.
    Huang Y.
    Liu M.
    Lu Y.
    Jiqiren/Robot, 2021, 43 (06): : 715 - 732
  • [8] Fast Semantic-Aware Motion State Detection for Visual SLAM in Dynamic Environment
    Singh, Gaurav
    Wu, Meiqing
    Do, Minh, V
    Lam, Siew-Kei
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 23014 - 23030
  • [9] A semantic visual SLAM based on improved mask R-CNN in dynamic environment
    Zhang, Kang
    Dong, Chaoyi
    Guo, Hongfei
    Ye, Qifan
    Gao, Liangliang
    Xiang, Shuai
    Chen, Xiaoyan
    Wu, Yi
    ROBOTICA, 2024, 42 (10) : 3570 - 3591
  • [10] ATY-SLAM: A Visual Semantic SLAM for Dynamic Indoor Environments
    Qi, Hao
    Hu, Zhuhua
    Xiang, Yunfeng
    Cai, Dupeng
    Zhao, Yaochi
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT V, 2023, 14090 : 3 - 14