On functional central limit theorems of Bayesian nonparametric priors

被引:6
作者
Al Labadi, Luai [1 ]
Abdelrazeq, Ibrahim [2 ]
机构
[1] Univ Toronto, Dept Stat Sci, Toronto, ON M5S 3G3, Canada
[2] Rhodes Coll, Dept Math & Comp Sci, Memphis, TN 38134 USA
关键词
Beta process; Dirichlet process; Levy processes; Nonparametric Bayesian inference; Processes with independent increments; Quantile process; Weak convergence; DIRICHLET PROCESS; LARGE-SAMPLE; MIXTURE;
D O I
10.1007/s10260-016-0365-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A general approach to derive the weak convergence, when centered and rescaled, of certain Bayesian nonparametric priors is proposed. This method may be applied to a wide range of processes including, for instance, nondecreasing nonnegative pure jump Levy processes and normalized nondecreasing nonnegative pure jump Levy processes with known finite dimensional distributions. Examples clarifying this approach involve the beta process in latent feature models and the Dirichlet process.
引用
收藏
页码:215 / 229
页数:15
相关论文
共 34 条