On ruin probability and aggregate claim representations for Pareto claim size distributions

被引:19
作者
Albrecher, Hansjoerg [1 ]
Kortschak, Dominik [1 ,2 ]
机构
[1] Univ Lausanne, Inst Actuarial Sci, Quartier UNIL Dorigny, CH-1015 Lausanne, Switzerland
[2] Austrian Acad Sci, Radon Inst Computat & Appl Math, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
D O I
10.1016/j.insmatheco.2009.08.005
中图分类号
F [经济];
学科分类号
02 ;
摘要
We generalize an integral representation for the ruin probability in a Cramer-Lundberg risk model with shifted (or also called US-)Pareto claim sizes, obtained by Ramsay (2003), to classical Pareto(a) claim size distributions with arbitrary real values a > 1 and derive its asymptotic expansion. Furthermore an integral representation for the tail of compound sums of Pareto-distributed claims is obtained and numerical illustrations of its performance in comparison to other aggregate claim approximations are provided. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:362 / 373
页数:12
相关论文
共 21 条
[1]  
ALBRECHER H, 2009, SCANDINAVIA IN PRESS
[2]  
[Anonymous], 1964, HDB MATH FUNCTIONS F
[3]  
[Anonymous], 1998, Loss models
[4]  
Asmussen S., 2000, Advanced Series on Statistical Science and Applied Probability, V2
[5]   Improved algorithms for rare event simulation with heavy tails [J].
Asmussen, Soren ;
Kroese, Dirk P. .
ADVANCES IN APPLIED PROBABILITY, 2006, 38 (02) :545-558
[6]  
BALTRUNAS A, 1999, SCANDINAVIAN ACTUARI, P120
[7]  
Barbe P., 2009, ASYMPTOTIC EXPANSION
[8]   ON SUMS OF INDEPENDENTLY DISTRIBUTED PARETO VARIATES [J].
BLUM, M .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1970, 19 (01) :191-&
[9]   A COMPARISON OF AVERAGE-LIKELIHOOD AND MAXIMUM-LIKELIHOOD RATIO TESTS FOR DETECTING RADAR TARGETS OF UNKNOWN DOPPLER FREQUENCY [J].
BRENNAN, LE ;
REED, IS ;
SOLLFREY, W .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (01) :104-+
[10]   ESTIMATES FOR THE PROBABILITY OF RUIN WITH SPECIAL EMPHASIS ON THE POSSIBILITY OF LARGE CLAIMS [J].
EMBRECHTS, P ;
VERAVERBEKE, N .
INSURANCE MATHEMATICS & ECONOMICS, 1982, 1 (01) :55-72