Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery

被引:266
作者
Cao, Ziyi [1 ,2 ]
Zhu, Xiaodong [1 ]
Xu, Dongxiao [1 ,2 ]
Dong, Pei [3 ]
Chee, Mason Oliver Lam [3 ]
Li, Xinjie [1 ]
Zhu, Keyu [1 ,2 ]
Ye, Mingxin [1 ]
Shen, Jianfeng [1 ]
机构
[1] Fudan Univ, Inst Special Mat & Technol, Shanghai 200433, Peoples R China
[2] Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China
[3] George Mason Univ, Dept Mech Engn, Fairfax, VA 22030 USA
基金
中国国家自然科学基金;
关键词
Artificial solid/electrolyte interphase; Coulombic efficiency; Stability; Zn dendrite; Zn anode;
D O I
10.1016/j.ensm.2020.12.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Zn metal with high Coulombic efficiency (CE) and stability are highly desired for developing high-capacity, low-cost, and environmentally friendly aqueous Zn ion batteries. To suppress the formation of byproducts and unfavorable dendrites which lead to poor cycling stability of batteries, a spin-coating method is used to uniformly coat a commercial and solvent-free cyanoacrylate adhesive (502 glue) on the Zn surface. The obtained layer serves as an artificial solid/electrolyte interphase, which not only effectively protects the Zn surface from water molecules and O-2, but also induces the even stripping/plating of Zn ions for the regulation of nucleation overpotential based on the increased ion diffusion barrier to homogenize the interfacial Zn2+ flux. Consequently, this strategy achieves stable voltage profiles and a high CE of 99.74% during cycles for the 502-coated Zn, far superior to that of bare Zn. Finally, this simple strategy also exhibits high cycling stability due to the elimination of side reactions and Zn dendrites, which is of significance for enhancing the full-cell performance matched with typical V2O5 center dot 1.6H(2)O cathode.
引用
收藏
页码:132 / 138
页数:7
相关论文
共 44 条
[1]  
Aronovich D.A, 2020, POLYM SCI D, V13, P297
[2]   Cationic Surfactant-Type Electrolyte Additive Enables Three-Dimensional Dendrite-Free Zinc Anode for Stable Zinc-Ion Batteries [J].
Bayaguud, Aruuhan ;
Luo, Xiao ;
Fu, Yanpeng ;
Zhu, Changbao .
ACS ENERGY LETTERS, 2020, 5 (09) :3012-3020
[3]   Stable and High-Energy-Density Zn-Ion Rechargeable Batteries Based on a MoS2-Coated Zn Anode [J].
Bhoyate, Sanket ;
Mhin, Sungwook ;
Jeon, Jae-eun ;
Park, KyoungRyeol ;
Kim, Junyoung ;
Choi, Wonbong .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (24) :27249-27257
[4]   Strategies for Dendrite-Free Anode in Aqueous Rechargeable Zinc Ion Batteries [J].
Cao, Ziyi ;
Zhuang, Peiyuan ;
Zhang, Xiang ;
Ye, Mingxin ;
Shen, Jianfeng ;
Ajayan, Pulickel M. .
ADVANCED ENERGY MATERIALS, 2020, 10 (30)
[5]   Fluorescence Probing of Active Lithium Distribution in Lithium Metal Anodes [J].
Cheng, Xiangyang ;
Xian, Fang ;
Hu, Zhenglin ;
Wang, Chen ;
Du, Xiaofan ;
Zhang, Huanrui ;
Chen, Shougang ;
Dong, Shanmu ;
Cui, Guanglei .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (18) :5936-5940
[6]  
Daniel R.S.M, 2009, J PHYS CHEM B, V113, P12736
[7]   Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries [J].
Ghazi, Zahid Ali ;
Sun, Zhenhua ;
Sun, Chengguo ;
Qi, Fulai ;
An, Baigang ;
Li, Feng ;
Cheng, Hui-Ming .
SMALL, 2019, 15 (32)
[8]   Unveiling Critical Insight into the Zn Metal Anode Cyclability in Mildly Acidic Aqueous Electrolytes: Implications for Aqueous Zinc Batteries [J].
Glatz, Hadrien ;
Tervoort, Elena ;
Kundu, Dipan .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (03) :3522-3530
[9]   Coupling between intra- and intermolecular motions in liquid water revealed by two-dimensional terahertz-infrared-visible spectroscopy [J].
Grechko, Maksim ;
Hasegawa, Taisuke ;
D'Angelo, Francesco ;
Ito, Hironobu ;
Turchinovich, Dmitry ;
Nagata, Yuki ;
Bonn, Mischa .
NATURE COMMUNICATIONS, 2018, 9
[10]   Micro-Raman and FTIR Spectroscopic Observation on the Phase Transitions of MnSO4 Droplets and Ionic Interactions between Mn2+ and SO42- [J].
Guo, Xin ;
Xiao, Han-Shuang ;
Wang, Feng ;
Zhang, Yun-Hong .
JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (23) :6480-6486