Dispersive estimates for Schrodinger operators in dimensions one and three

被引:135
作者
Goldberg, M [1 ]
Schlag, W [1 ]
机构
[1] 253 37 CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
关键词
D O I
10.1007/s00220-004-1140-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider L-1 --> L-infinity estimates for the time evolution of Hamiltonians H = - Delta + V in dimensions d = 1 and d = 3 with bound t- d/2. We require decay of the potentials but no regularity. In d = 1 the decay assumption is integral (1+| x|)| V (x)| dx < infinity, whereas in d = 3 it is | V ( x)| <= C( 1 + | x|)(-3-).
引用
收藏
页码:157 / 178
页数:22
相关论文
共 18 条
[1]  
AGMON S., 1975, Ann. Sc. Norm. Super. Pisa, Cl. Sci., V2, P151
[2]  
[Anonymous], MATH ANN
[3]  
Artbazar G., 2000, J MATH SCI-U TOKYO, V7, P221
[4]   INVERSE SCATTERING ON THE LINE [J].
DEIFT, P ;
TRUBOWITZ, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1979, 32 (02) :121-251
[6]  
JENSEN A, 1984, J MATH ANAL APPL, V101, P397, DOI 10.1016/0022-247X(84)90110-0
[7]   A unified approach to resolvent expansions at thresholds [J].
Jensen, A ;
Nenciu, G .
REVIEWS IN MATHEMATICAL PHYSICS, 2001, 13 (06) :717-754
[8]   SPECTRAL PROPERTIES OF SCHRODINGER OPERATORS AND TIME-DECAY OF THE WAVE-FUNCTIONS [J].
JENSEN, A ;
KATO, T .
DUKE MATHEMATICAL JOURNAL, 1979, 46 (03) :583-611
[9]   DECAY-ESTIMATES FOR SCHRODINGER-OPERATORS [J].
JOURNE, JL ;
SOFFER, A ;
SOGGE, CD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (05) :573-604
[10]  
Katznelson Y., 2004, An introduction to harmonic analysis, Vthird