On the regularity of the Navier-Stokes equation in a thin periodic domain

被引:21
作者
Kukavica, Igor [1 ]
Ziane, Mohammed [1 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
Navier-Stokes equations; weak solutions; strong solutions; regularity;
D O I
10.1016/j.jde.2006.11.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We address the global regularity Of Solutions of the Navier-Stokes equations in a thin domain Omega = [0, L-1] x [0, L-2] x [0, is an element of] with periodic boundary conditions, where L-1, L-2 > 0 and is an element of is an element of (0, 1/2). We prove that if vertical bar vertical bar del u(0)vertical bar vertical bar(L2(Omega)) <= (nu)/(1/2)(3/2)(C(L1, L2)is an element of)(vertical bar log is an element of vertical bar) where mu(0) is the initial datum, then there exists a unique global smooth solution with the initial datum mu(0). Also, if vertical bar vertical bar u(0)vertical bar vertical bar (H)1/2((Omega)) <= (nu)/(1/4)(C(L1, L2)vertical bar log is an element of vertical bar) the global regularity of the corresponding solution holds. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:485 / 506
页数:22
相关论文
共 18 条