On Laminar Flow of Non-Newtonian Fluids in Porous Media

被引:10
作者
Fayed, Hassan E. [1 ]
Sheikh, Nadeem A. [1 ]
Iliev, Oleg [1 ,2 ]
机构
[1] King Abdullah Univ Sci & Technol, Numer Porous Media SRI Ctr, Thuwal 239556900, Saudi Arabia
[2] Fraunhofer Inst Ind Math ITWM, Dept Flows & Mat Simulat, Kaiserslautern, Germany
关键词
Laminar flow; Non-Newtonian; Power law; Carreau model; Friction factor; PRESSURE-DROP; TRANSPORT; MODELS;
D O I
10.1007/s11242-015-0592-8
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Flow of generalized Newtonian fluids in porous media can be modeled as a bundle of capillary tubes or a pore-scale network. In general, both approaches rely on the solution of Hagen-Poiseuille equation using power law to estimate the variations in the fluid viscosity due to the applied shear rate. Despite the effectiveness and simplicity, power law tends to provide unrealistic values for the effective viscosity especially in the limits of zero and infinite shear rates. Here, instead of using power law, Carreau model (bubbles, drops, and particles in non-Newtonian fluids. Taylor & Francis Group, New York, 2007) is used to determine the effective viscosity as a function of the shear strain rate. Carreau model can predict accurately the variation in the viscosity at all shear rates and provide more accurate solution for the flow physics in a single pore. Using the results for a single pore, normalized Fanning friction coefficient has been calculated and plotted as a function of the newly defined Reynolds number based on pressure gradient. For laminar flow, the variation in the friction coefficient with Reynolds number has been plotted and scaled. It is observed that generalized Newtonian fluid flows show Newtonian nature up to a certain Reynolds number. At high Reynolds number, deviation from the Newtonian behavior is observed. The main contribution of this paper is to present a closed-form solution for the flow in a single pore using Carreau model, which allows for fast evaluation of the relationship between flux and pressure gradient in an arbitrary pore diameter. In this way, we believe that our development will open the perspectives for using Carreau models in pore-network simulations at low computational costs to obtain more accurate prediction for generalized Newtonian fluid flows in porous media.
引用
收藏
页码:253 / 264
页数:12
相关论文
共 29 条
[1]   A macroscopic model for shear-thinning flow in packed beds based on network modeling [J].
Balhoff, MT ;
Thompson, KE .
CHEMICAL ENGINEERING SCIENCE, 2006, 61 (02) :698-719
[2]  
Bird R., 2002, Transport phenomena, V2nd ed.
[3]   Flow in porous media - pore-network models and multiphase flow [J].
Blunt, MJ .
CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2001, 6 (03) :197-207
[4]   RHEOLOGICAL PROPERTIES OF AQUEOUS DISPERSIONS OF TRAGACANTH AND GUAR GUMS AT DIFFERENT CONCENTRATIONS [J].
Chenlo, F. ;
Moreira, R. ;
Silva, C. .
JOURNAL OF TEXTURE STUDIES, 2010, 41 (03) :396-415
[5]  
Chhabra RP, 2007, CHEM IND-SER, V113
[6]   Estimates of effective permeability for non-Newtonian fluid flow in randomly heterogeneous porous media [J].
Di Federico, Vittorio ;
Pinelli, Marco ;
Ugarelli, Rita .
STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2010, 24 (07) :1067-1076
[7]   TURBULENT FLOW OF NON-NEWTONIAN SYSTEMS [J].
DODGE, DW ;
METZNER, AB .
AICHE JOURNAL, 1959, 5 (02) :189-204
[8]  
GARCIA E J, 1987, Journal of Food Process Engineering, V9, P93, DOI 10.1111/j.1745-4530.1986.tb00120.x
[9]   Predicting laminar-turbulent transition in Poiseuille pipe flow for non-Newtonian fluids [J].
Guzel, B. ;
Frigaard, I. ;
Martinez, D. M. .
CHEMICAL ENGINEERING SCIENCE, 2009, 64 (02) :254-264
[10]   On non-Newtonian fluid flow in ducts and porous media [J].
Liu, SJ ;
Masliyah, JH .
CHEMICAL ENGINEERING SCIENCE, 1998, 53 (06) :1175-1201