Deep learning automated pathology in ex vivo microscopy

被引:19
作者
Combalia, Marc [1 ]
Garcia, Sergio [1 ]
Malvehy, Josep [1 ]
Puig, Susana [1 ]
Mulberger, Alba Guembe [2 ]
Browning, James [2 ]
Garcet, Sandra [2 ]
Krueger, James G. [2 ]
Lish, Samantha R. [2 ]
Lax, Rivka [2 ]
Ren, Jeannie [2 ]
Stevenson, Mary [3 ]
Doudican, Nicole [3 ]
Carucci, John A. [3 ]
Jain, Manu [4 ]
White, Kevin [5 ]
Rakos, Jaroslav [6 ]
Gareau, Daniel S. [2 ,6 ]
机构
[1] Univ Barcelona, Hosp Clin Barcelona, Dept Dermatol, Barcelona, Spain
[2] Rockefeller Univ, 1230 York Ave, New York, NY 10065 USA
[3] Mem Sloan Kettering Canc Ctr, 1275 York Ave, New York, NY 10065 USA
[4] NYU, Ronald O Pearlman Dept Dermatol, 550 First Ave, New York, NY 10016 USA
[5] Oregon Hlth & Sci Univ, Dept Dermatol, 3303 South Bond Ave, Portland, OR 97239 USA
[6] SurgiVance Inc, 310 East 67th St, New York, NY 10065 USA
基金
美国国家卫生研究院;
关键词
SQUAMOUS-CELL CARCINOMA; MOHS MICROGRAPHIC SURGERY; CONFOCAL MICROSCOPY; UNITED-STATES; TISSUE; EXCISIONS; COHORT; IMAGE;
D O I
10.1364/BOE.422168
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Standard histopathology is currently the gold standard for assessment of margin status in Mohs surgical removal of skin cancer. Ex vivo confocal microscopy (XVM) is potentially faster, less costly and inherently 3D/digital compared to standard histopathology. Despite these advantages, XVM use is not widespread due, in part, to the need for pathologists to retrain to interpret XVM images. We developed artificial intelligence (AI)-driven XVM pathology by implementing algorithms that render intuitive XVM pathology images identical to standard histopathology and produce automated tumor positivity maps. XVM images have fluorescence labeling of cellular and nuclear biology on the background of endogenous (unstained) reflectance contrast as a grounding counter-contrast. XVM images of 26 surgical excision specimens discarded after Mohs micrographic surgery were used to develop an XVM data pipeline with 4 stages: flattening, colorizing, enhancement and automated diagnosis. The first two stages were novel, deterministic image processing algorithms, and the second two were AI algorithms. Diagnostic sensitivity and specificity were calculated for basal cell carcinoma detection as proof of principal for the XVM image processing pipeline. The resulting diagnostic readouts mimicked the appearance of histopathology and found tumor positivity that required first collapsing the confocal stack to a 2D image optimized for cellular fluorescence contrast, then a dark field-to-bright field colorizing transformation, then either an AI image transformation for visual inspection or an AI diagnostic binary image segmentation of tumor obtaining a diagnostic sensitivity and specificity of 88% and 91% respectively. These results show that video-assisted micrographic XVM pathology could feasibly aid margin status determination in micrographic surgery of skin cancer.
引用
收藏
页码:3103 / 3116
页数:14
相关论文
共 43 条
  • [1] Adverse Events Associated With Mohs Micrographic Surgery Multicenter Prospective Cohort Study of 20 821 Cases at 23 Centers
    Alam, Murad
    Ibrahim, Omer
    Nodzenski, Michael
    Strasswimmer, John M.
    Jiang, Shang I. Brian
    Cohen, Joel L.
    Albano, Brian J.
    Batra, Priya
    Behshad, Ramona
    Benedetto, Anthony V.
    Chan, Stanley
    Chilukuri, Suneel
    Crocker, Courtney
    Crystal, Hillary W.
    Dhir, Anir
    Faulconer, Victoria A.
    Goldberg, Leonard H.
    Goodman, Chandra
    Greenbaum, Steven S.
    Hale, Elizabeth K.
    Hanke, William
    Hruza, George J.
    Jacobson, Laurie
    Jones, Jason
    Kimyai-Asadi, Arash
    Kouba, David
    Lahti, James
    Macias, Kristi
    Miller, Stanley J.
    Monk, Edward
    Nguyen, Tri H.
    Oganesyan, Gagik
    Pennie, Michelle
    Pontius, Katherine
    Posten, William
    Reichel, Jennifer L.
    Rohrer, Thomas E.
    Rooney, James A.
    Tran, Hien T.
    Poon, Emily
    Bolotin, Diana
    Dubina, Meghan
    Pace, Natalie
    Kim, Natalie
    Disphanurat, Wareeporn
    Kathawalla, Ummul
    Kakar, Rohit
    West, Dennis P.
    Veledar, Emir
    Yoo, Simon
    [J]. JAMA DERMATOLOGY, 2013, 149 (12) : 1378 - 1385
  • [2] Arnon O, 2010, ISR MED ASSOC J, V12, P431
  • [3] Frozen-Section Tissue Processing in Mohs Surgery
    Aslam, Arif
    Aasi, Sumaira Z.
    [J]. DERMATOLOGIC SURGERY, 2019, 45 : S57 - S69
  • [4] Ex vivo fluorescence confocal microscopy for fast evaluation of tumour margins during Mohs surgery
    Bennassar, A.
    Vilata, A.
    Puig, S.
    Malvehy, J.
    [J]. BRITISH JOURNAL OF DERMATOLOGY, 2014, 170 (02) : 360 - 365
  • [5] PreMosa: extracting 2D surfaces from 3D microscopy mosaics
    Blasse, Corinna
    Saalfeld, Stephan
    Etournay, Raphael
    Sagner, Andreas
    Eaton, Suzanne
    Myers, Eugene W.
    [J]. BIOINFORMATICS, 2017, 33 (16) : 2563 - 2569
  • [6] Characteristics of mohs practices in the united states: A recall survey of ACMS surgeons
    Campbell, Ross M.
    Perlis, Clifford S.
    Malik, Mohsin K.
    Dufresne, Raymond G., Jr.
    [J]. DERMATOLOGIC SURGERY, 2007, 33 (12) : 1413 - 1418
  • [7] Outcomes of Primary Cutaneous Squamous Cell Carcinoma With Perineural Invasion An 11-Year Cohort Study
    Carter, Joi B.
    Johnson, Matthew M.
    Chua, Tiffany L.
    Karia, Pritesh S.
    Schmults, Chrysalyne D.
    [J]. JAMA DERMATOLOGY, 2013, 149 (01) : 35 - 41
  • [8] Combalia M, 2019, PR MACH LEARN RES, V102, P121
  • [9] How Slow Is Too Slow? Correlation of Operative Time to Complications: An Analysis from the Tennessee Surgical Quality Collaborative
    Daley, Brian J.
    Cecil, William
    Clarke, P. Chris
    Cofer, Joseph B.
    Guillamondegui, Oscar D.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS, 2015, 220 (04) : 550 - 558
  • [10] Preparation of frozen sections
    Davis, DA
    Pellowski, DM
    Hanke, CW
    [J]. DERMATOLOGIC SURGERY, 2004, 30 (12) : 1479 - 1485