Inertial Derivative-Free Projection Method for Nonlinear Monotone Operator Equations With Convex Constraints

被引:20
作者
Abubakar, Auwal Bala [1 ,2 ,3 ]
Kumam, Poom [1 ,4 ,5 ]
Ibrahim, Abdulkarim Hassan [1 ]
机构
[1] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Ctr Excellence Theoret & Computat Sci TaCS CoE, Fixed Point Res Lab,Fixed Point Theory & Applicat, Bangkok 10140, Thailand
[2] Bayero Univ, Fac Phys Sci, Dept Math Sci, Kano 700241, Nigeria
[3] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Ga Rankuwa, South Africa
[4] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Ctr Excellence Theoret & Computat Sci TaCS CoE, Bangkok 10140, Thailand
[5] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
关键词
Convergence; Sun; Licenses; Scientific computing; Mathematical model; Iterative methods; Extrapolation; Monotone nonlinear operator; inertial algorithm; conjugate gradient; projection method; CONJUGATE-GRADIENT METHOD; ALGORITHMS; SIGNAL;
D O I
10.1109/ACCESS.2021.3091906
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose an inertial derivative-free projection method for solving convex constrained nonlinear monotone operator equations (CNME). The method incorporates the inertial step with an existing method called derivative-free projection (DFPI) method for solving CNME. The reason is to improve the convergence speed of DFPI as it has been shown and reported in several works that indeed the inertial step can speed up convergence. The global convergence of the proposed method is proved under some mild assumptions. Finally, numerical results reported clearly show that the proposed method is more efficient than the DFPI.
引用
收藏
页码:92157 / 92167
页数:11
相关论文
共 50 条
[1]  
Abubakar A.B., 2020, APPL ANAL OPTIMIZATI, V4, P1
[2]  
Abubakar A. B., 2021, J MATH-UK, V2021, P1
[3]  
Abubakar AB, 2020, COMPUT APPL MATH, V39, P1
[4]   FR-type algorithm for finding approximate solutions to nonlinear monotone operator equations [J].
Abubakar, Auwal Bala ;
Muangchoo, Kanikar ;
Ibrahim, Abdulkarim Hassan ;
Abubakar, Jamilu ;
Rano, Sadiya Ali .
ARABIAN JOURNAL OF MATHEMATICS, 2021, 10 (02) :261-270
[5]  
Abubakar AB, 2021, JPN J IND APPL MATH, V38, P805, DOI [10.1007/s13160-021-00462-2, 10.1080/15440478.2021.1889436]
[6]   A New Three-Term Hestenes-Stiefel Type Method for Nonlinear Monotone Operator Equations and Image Restoration [J].
Abubakar, Auwal Bala ;
Muangchoo, Kanikar ;
Ibrahim, Abdulkarim Hassan ;
Muhammad, Abubakar Bakoji ;
Jolaoso, Lateef Olakunle ;
Aremu, Kazeem Olalekan .
IEEE ACCESS, 2021, 9 :18262-18277
[7]   Derivative-free HS-DY-type method for solving nonlinear equations and image restoration [J].
Abubakar, Auwal Bala ;
Kumam, Poom ;
Ibrahim, Abdulkarim Hassan ;
Rilwan, Jewaidu .
HELIYON, 2020, 6 (11)
[8]   A Barzilai-Borwein gradient projection method for sparse signal and blurred image restoration [J].
Abubakar, Auwal Bala ;
Kumam, Poom ;
Mohammad, Hassan ;
Awwal, Aliyu Muhammed .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2020, 357 (11) :7266-7285
[9]  
Abubakar AB, 2020, THAI J MATH, V18, P501
[10]   A descent Dai-Liao conjugate gradient method for nonlinear equations [J].
Abubakar, Auwal Bala ;
Kumam, Poom .
NUMERICAL ALGORITHMS, 2019, 81 (01) :197-210