Computational Analysis of Nanoparticle Features on Protein Corona Composition in Biological Nanoparticle-Protein Interactions

被引:0
作者
Movahedi, Marziyeh [1 ]
Zare-Mirakabad, Fatemeh [1 ]
Ramazani, Ali [2 ]
Konduru, Nagarjun [3 ]
Arab, Seyed Shahriar [4 ]
机构
[1] Dept Comp Sci & Math, Tehran, Iran
[2] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
[3] Univ Texas Hlth & Sci Ctr Tyler, Dept Cellular & Mol Biol, Tyler, TX USA
[4] TMU, Dept Biophys, Tehran, Iran
来源
2019 IEEE 5TH CONFERENCE ON KNOWLEDGE BASED ENGINEERING AND INNOVATION (KBEI 2019) | 2019年
关键词
nanoparticle; protein corona; protein-nanoparticle interaction; PLASMA;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
the key role of protein-nanoparticle (NP) interactions in biological mediums has begun to emerge recently with the development of the concept of NP-protein 'corona'. A dynamic layer of proteins-referred to as corona-adsorb on to NP surfaces immediately upon entering a biological milieu. This layer of protein is mainly constructed via hydrophobic interactions in addition to the entropy-driven mechanisms. The unique fingerprint of protein corona for each NP type arises from the differences in the characteristics of NPs including SSA, D-xrd, rho, D-h, PdI and Zeta. Therefore, in this paper, according to the characteristics of four different NPs and their corresponding quantifications of nine corona proteins taken from a study by Konduru et al., we computationally analyze the effect of the characteristics of NPs, and accordingly present a computational model to predict the quantification of the formed corona proteins around the NPs. For this, a multiple linear regression model is developed to investigate the effect of selective physicochemical characteristics of NPs on the protein corona formation. This model could be used as a predictive model in addition to the computational models to determine the percentage of proteins interacting with NPs.
引用
收藏
页码:776 / 781
页数:6
相关论文
共 14 条
[1]   Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy [J].
Aggarwal, Parag ;
Hall, Jennifer B. ;
McLeland, Christopher B. ;
Dobrovolskaia, Marina A. ;
McNeil, Scott E. .
ADVANCED DRUG DELIVERY REVIEWS, 2009, 61 (06) :428-437
[2]   Nanoparticles with decreasing surface hydrophobicities:: influence on plasma protein adsorption [J].
Gessner, A ;
Waicz, R ;
Lieske, A ;
Paulke, BR ;
Mäder, K ;
Müller, RH .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2000, 196 (02) :245-249
[3]  
Jacobs I. S., 1963, MAGNETISM, VIII, P271
[4]  
Konduru Nagarjun, 2018, LANGMUIR
[5]   Protein corona: implications for nanoparticle interactions with pulmonary cells [J].
Konduru, Nagarjun V. ;
Molina, Ramon M. ;
Swami, Archana ;
Damiani, Flavia ;
Pyrgiotakis, Georgios ;
Lin, Paulo ;
Andreozzi, Patrizia ;
Donaghey, Thomas C. ;
Demokritou, Philip ;
Krol, Silke ;
Kreyling, Wolfgang ;
Brain, Joseph D. .
PARTICLE AND FIBRE TOXICOLOGY, 2017, 14
[6]   Protein-nanoparticle interactions [J].
Lynch, Iseult ;
Dawson, Kenneth A. .
NANO TODAY, 2008, 3 (1-2) :40-47
[7]   Temperature: The "Ignored" Factor at the NanoBio Interface [J].
Mahmoudi, Morteza ;
Abdelmonem, Abuelmagd M. ;
Behzadi, Shahed ;
Clement, Joachim H. ;
Dutz, Silvio ;
Ejtehadi, Mohammad R. ;
Hartmann, Raimo ;
Kantner, Karsten ;
Linne, Uwe ;
Maffre, Pauline ;
Metzler, Scott ;
Moghadam, Mojhgan K. ;
Pfeiffer, Christian ;
Rezaei, Meisam ;
Ruiz-Lozano, Pilar ;
Serpooshan, Vahid ;
Shokrgozar, Mohammad A. ;
Nienhaus, G. Ulrich ;
Parak, Wolfgang J. .
ACS NANO, 2013, 7 (08) :6555-6562
[8]  
McNaught A.D., 1997, COMPENDIUM CHEM TERM, V1669
[9]   Physical-Chemical Aspects of Protein Corona: Relevance to in Vitro and in Vivo Biological Impacts of Nanoparticles [J].
Monopoli, Marco P. ;
Walczyk, Dorota ;
Campbell, Abigail ;
Elia, Giuliano ;
Lynch, Iseult ;
Bombelli, Francesca Baldelli ;
Dawson, Kenneth A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (08) :2525-2534
[10]  
Rahman M., 2013, PROTEIN NANOPARTICLE