Symbiotic functioning and bradyrhizobial biodiversity of cowpea (Vigna unguiculata L. Walp.) in Africa

被引:67
|
作者
Pule-Meulenberg, Flora [2 ]
Belane, Alphonsus K. [3 ]
Krasova-Wade, Tatiana [4 ]
Dakora, Felix D. [1 ]
机构
[1] Tshwane Univ Technol, Dept Chem, ZA-0001 Pretoria, South Africa
[2] Tshwane Univ Technol, Dept Biotechnol, ZA-0001 Pretoria, South Africa
[3] Tshwane Univ Technol, Dept Crop Sci, ZA-0001 Pretoria, South Africa
[4] UCAD, ISRA, Lab Commun Microbiol IRD, Dakar, Senegal
来源
BMC MICROBIOLOGY | 2010年 / 10卷
基金
新加坡国家研究基金会;
关键词
NATURAL N-15 ABUNDANCE; N-2; FIXATION; RHIZOBIA; LEGUMES; DIVERSITY; NITROGEN; REGIONS; IDENTIFICATION; GENOTYPES; BOTSWANA;
D O I
10.1186/1471-2180-10-89
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Background: Cowpea is the most important food grain legume in Sub-Saharan Africa. However, no study has so far assessed rhizobial biodiversity and/or nodule functioning in relation to strain IGS types at the continent level. In this study, 9 cowpea genotypes were planted in field experiments in Botswana, South Africa and Ghana with the aim of i) trapping indigenous cowpea root-nodule bacteria (cowpea "rhizobia") in the 3 countries for isolation, molecular characterisation using PCR-RFLP analysis, and sequencing of the 16S - 23S rDNA IGS gene, ii) quantifying N-fixed in the cowpea genotypes using the N-15 natural abundance technique, and iii) relating the levels of nodule functioning (i. e. N-fixed) to the IGS types found inside nodules. Results: Field measurements of N-2 fixation revealed significant differences in plant growth, delta N-15 values, %Ndfa and amounts of N-fixed between and among the 9 cowpea genotypes in Ghana and South Africa. Following DNA analysis of 270 nodules from the 9 genotypes, 18 strain IGS types were found. Relating nodule function to the 18 IGS types revealed significant differences in IGS type N-2-fixing efficiencies. Sequencing the 16S - 23S rDNA gene also revealed 4 clusters, with cluster 2 forming a distinct group that may be a new Bradyrhizobium species. Taken together, our data indicated greater biodiversity of cowpea bradyrhizobia in South Africa relative to Botswana and Ghana. Conclusions: We have shown that cowpea is strongly dependant on N-2 fixation for its N nutrition in both South Africa and Ghana. Strain IGS type symbiotic efficiency was assessed for the first time in this study, and a positive correlation was discernible where there was sole nodule occupancy. The differences in IGS type diversity and symbiotic efficiency probably accounts for the genotype x environment interaction that makes it difficult to select superior genotypes for use across Africa. The root-nodule bacteria nodulating cowpea in this study all belonged to the genus Bradyrhizobium. Some strains from Southern Africa were phylogenetically very distinct, suggesting a new Bradyrhizobium species.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Allozyme diversity of cultivated cowpea Vigna unguiculata (L.) Walp.
    R. S. Pasquet
    Theoretical and Applied Genetics, 2000, 101 : 211 - 219
  • [12] Allozyme diversity of cultivated cowpea Vigna unguiculata (L.) Walp.
    Pasquet, RS
    THEORETICAL AND APPLIED GENETICS, 2000, 101 (1-2) : 211 - 219
  • [13] Inheritance of time to flowering in cowpea (Vigna unguiculata (L.) Walp.)
    M. F. Ishiyaku
    B. B. Singh
    P. Q. Craufurd
    Euphytica, 2005, 142 : 291 - 300
  • [14] GENETIC ANALYSIS OF VEGETABLE COWPEA [VIGNA UNGUICULATA (L.) WALP.]
    Subbiah, A.
    Prabhu, M.
    Rajangam, J.
    Jagadeesan, R.
    Anbu, S.
    LEGUME RESEARCH, 2013, 36 (01) : 1 - 9
  • [15] Genetic study for earliness in cowpea (Vigna unguiculata L. Walp.)
    Pal, Akhilesh Kumar
    Kumar, Sanjay
    Maurya, A. N.
    INDIAN JOURNAL OF HORTICULTURE, 2007, 64 (01) : 63 - 66
  • [16] Ethnobotanical study of cowpea (Vigna unguiculata (L.) Walp.) in Senegal
    Awa Sarr
    Amy Bodian
    Mame Codou Gueye
    Badara Gueye
    Ghislain Kanfany
    Cyril Diatta
    Lardia Ali Bougma
    Elisabeth A. M. C. Diop
    Ndiaga Cissé
    Diaga Diouf
    Christian Leclerc
    Journal of Ethnobiology and Ethnomedicine, 18
  • [17] Inheritance of time to flowering in cowpea (Vigna unguiculata (L.) Walp.)
    Ishiyaku, MF
    Singh, BB
    Craufurd, PQ
    EUPHYTICA, 2005, 142 (03) : 291 - 300
  • [18] Inheritance of flower and pod colour in cowpea (Vigna unguiculata L. Walp.)
    R.S. Sangwan
    G.P. Lodhi
    Euphytica, 1998, 102 : 191 - 193
  • [19] Maternal inheritance of plant variegation in cowpea, Vigna unguiculata (L.) Walp.
    I. Fawole
    Theoretical and Applied Genetics, 2001, 102 : 458 - 462
  • [20] Inheritance of flower and pod colour in cowpea (Vigna unguiculata L. Walp.)
    Sangwan, RS
    Lodhi, GP
    EUPHYTICA, 1998, 102 (02) : 191 - 193