Artificial intelligence for precision education in radiology

被引:109
|
作者
Duong, Michael Tran [1 ,2 ]
Rauschecker, Andreas M. [2 ,3 ]
Rudie, Jeffrey D. [2 ,3 ]
Chen, Po-Hao [4 ]
Cook, Tessa S. [2 ]
Bryan, R. Nick [2 ,5 ]
Mohan, Suyash [2 ,6 ]
机构
[1] Univ Penn, Perelman Sch Med, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[3] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA
[4] Cleveland Clin, Imaging Inst, Cleveland, OH 44106 USA
[5] Univ Texas Austin, Dell Med Sch, Dept Diagnost Med, Austin, TX 78712 USA
[6] Univ Penn, Dept Neurosurg, Philadelphia, PA 19104 USA
来源
BRITISH JOURNAL OF RADIOLOGY | 2019年 / 92卷 / 1103期
关键词
SEGMENTATION; IDENTIFICATION; INFORMATION; PERFORMANCE; FEATURES; DATABASE; LESIONS; SYSTEM; FUTURE; TOOL;
D O I
10.1259/bjr.20190389
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In the era of personalized medicine, the emphasis of health care is shifting from populations to individuals. Artificial intelligence (Al) is capable of learning without explicit instruction and has emerging applications in medicine, particularly radiology. Whereas much attention has focused on teaching radiology trainees about Al, here our goal is to instead focus on how Al might be developed to better teach radiology trainees. While the idea of using Al to improve education is not new, the application of Al to medical and radiological education remains very limited. Based on the current educational foundation, we highlight an Al-integrated framework to augment radiology education and provide use case examples informed by our own institution's practice. The coming age of "Al-augmented radiology" may enable not only "precision medicine" but also what we describe as "precision medical education," where instruction is tailored to individual trainees based oi their learning styles and needs.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Applications of artificial intelligence in radiology
    Jahn, Johannes
    Weiss, Jakob
    Bamberg, Fabian
    Kotter, Elmar
    RADIOLOGIE, 2024, 64 (10): : 752 - 757
  • [22] Artificial intelligence in cardiac radiology
    Marly van Assen
    Giuseppe Muscogiuri
    Damiano Caruso
    Scott J. Lee
    Andrea Laghi
    Carlo N. De Cecco
    La radiologia medica, 2020, 125 : 1186 - 1199
  • [23] Artificial intelligence in cardiac radiology
    van Assen, Marly
    Muscogiuri, Giuseppe
    Caruso, Damiano
    Lee, Scott J.
    Laghi, Andrea
    De Cecco, Carlo N.
    RADIOLOGIA MEDICA, 2020, 125 (11): : 1186 - 1199
  • [24] Application of artificial intelligence to radiology
    Deyer, Timothy
    Doshi, Amish
    ANNALS OF TRANSLATIONAL MEDICINE, 2019, 7 (11)
  • [25] Artificial intelligence in dentomaxillofacial radiology
    Gokdeniz, Seyide Tugce
    Kamburoglu, Kivanc
    WORLD JOURNAL OF RADIOLOGY, 2022, 14 (03):
  • [26] Artificial Intelligence in Cardiothoracic Radiology
    Auffermann, William F.
    Gozansky, Elliott K.
    Tridandapani, Srini
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2019, 212 (05) : 997 - 1001
  • [27] Artificial Intelligence in Interventional Radiology
    Kallini, Joseph R.
    Moriarty, John M.
    SEMINARS IN INTERVENTIONAL RADIOLOGY, 2022, 39 (03) : 341 - 347
  • [28] Artificial Intelligence in Radiology for Ethiopia
    Mekonen, Kumlachew Abate
    Mohammed, Shimels Hussien
    Kebede, Tesfaye
    Bedane, Alemayehu
    Buser, Ashenafi Aberra
    ETHIOPIAN JOURNAL OF HEALTH SCIENCES, 2024, 34
  • [29] Artificial Intelligence, Real Radiology
    Kahn, Charles E., Jr.
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2019, 1 (01)
  • [30] Radiology Education: Opportunities to Use Online Tools and Artificial Intelligence to Enhance the Experience
    Ko, Hyun Soo
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2023, 220 (04) : 613 - 613